Article
Keywords:
hierarchical overlapping clustering; computational complexity; approximation of a given dissimilarity measure; $k$-ultrametric; Robinson dissimilarity measure; decision problems; NP-complete
Summary:
In this paper the computational complexity of the problem of the approximation of a given dissimilarity measure on a finite set $X$ by a $k$-ultrametric on $X$ and by a Robinson dissimilarity measure on $X$ is investigared. It is shown that the underlying decision problems are NP-complete.
References:
[1] E. Diday: Une représentation visuelle des classes empiétantes - les pyramides. Rap. de Recherche No 291, INRIA, Rocquencourt, 1984.
[2] M. R. Garey, D. S. Johnson:
Computers and Intractability: a Guide to the Theory of NP-completeness. W. H. Freeman, San Francisco, 1979.
MR 0519066 |
Zbl 0411.68039
[5] R. M. Karp:
Red liability among combinatorial problems. Complexity of computer computations, Proceedings, Plenum Press 1972. Editors: R. E. Miller, J. W. Thatcher.
MR 0373375
[6] M. Křivánek, J. Morávek:
On NP-hardness in hierarchical clustering. COMPSTAT 1984, Proceedings, Physica-Verlag 1984. Editors: T. Havránek, Z. Šidák, M. Novák.
MR 0806995