Previous |  Up |  Next

Article

Keywords:
convergence; $L_p$-norms; Hermitian matrix; spectral radius
Summary:
a recurrence relation for computing the $L_p$-norms of an Hermitian matrix is derived and an expression giving approximately the number of eigenvalues which in absolute value are equal to the spectral radius is determined. Using the $L_p$-norms for the approximation of the spectral radius of an Hermitian matrix an a priori and a posteriori bounds for the error are obtained. Some properties of the a posteriori bound are discussed.
References:
[1] E. F. Beckenbach, R. Bellman: Inequalities. Springer-Verlag, Berlin Heidelberg New York Tokyo, 1983. MR 0192009 | Zbl 0513.26003
[2] R. Bellman: Selective computation - V: The largest characteristic root of a matrix. Nonlinear Anal. Theory, Meth. and Appl., 3(1979), 905-908. DOI 10.1016/0362-546X(79)90058-0 | MR 0548962 | Zbl 0495.65012
[3] R. T. Gregory, D. L. Karney: A collection of matrices for testing computational algorithms. J. Wiley & Sons., New York, 1969. MR 0253538
[4] L. Gross: Existence and uniqueness of physical ground states. J. Functional Analysis, 10 (1972) 52-109. DOI 10.1016/0022-1236(72)90057-2 | MR 0339722 | Zbl 0237.47012
[5] R. A. Kunze. : $L_p$ Fourier transforms on locally compact unimodular groups. Trans. Amer. Math. Soc., 89 (1958), 519-540. MR 0100235
[6] J. Peetre, G. Sparr: Interpolation and non-commutative integration. Ann. of Math. Рurа Appl., 104 (1975), 187-207. DOI 10.1007/BF02417016 | MR 0473869 | Zbl 0309.46031
[7] I. E. Segal: A non-commutative extension of abstract integration. Ann. of Math., 57 (1953), 401-457, correction 58 (1953), 595-596. MR 0054864 | Zbl 0051.34202
[8] P. Stavinoha: On limits of $L_p$-norms of linear operators. Czechoslovak Math. J. 32 (1982), 474-480. MR 0669788 | Zbl 0511.46062
Partner of
EuDML logo