[1] K. Bell:
A refined triangular plate bending finite element. Int. J. Numer. Meth. Engng. 1 (1969), 101-122.
DOI 10.1002/nme.1620010108
[2] J. H. Bramble M. Zlámal:
Triangular elements in the finite element method. Math. Соmр. 24 (1970), 809-820.
MR 0282540
[3] J. Brilla: Visco-elastic bending of anisotropic plates. (in Slovak), Stav. Čas. 17 (1969), 153-175.
[4] J. Brilla:
Finite element method for quasiparabolic equations. in Proc. of the 4th symposium on basic problems of numer. math., Plzeň (1978), 25-36.
MR 0566152 |
Zbl 0445.73060
[5] P. G. Ciarlet:
The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978.
MR 0520174 |
Zbl 0383.65058
[6] V. Girault P.-A. Raviart:
Finite Element Approximation of the Navier-Stokes Equations. Springer-Verlag, Berlin-Heidelberg-New York, 1979.
MR 0548867
[7] J. Hřebíček:
Numerical analysis of the general biharmonic problem by the finite element method. Apl. mat. 27 (1982), 352-374.
MR 0674981
[8] V. Kolář J. Kratochvíl F. Leitner A. Ženíšek: Calculation of plane and Space Constructions by the Finite Element Method. (Czech). SNTL, Praha, 1979.
[9] J. Kratochvíl A. Ženíšek M. Zlámal:
A simple algorithm for the stiffness matrix of triangular plate bending finite elements. Int. J. Numer. Meth. Engng. 3 (1971), 553 - 563.
DOI 10.1002/nme.1620030409
[10] J. Nedoma:
The finite element solution of parabolic equations. Apl. mat. 23 (1978), 408-438.
MR 0508545 |
Zbl 0427.65075
[11] S. Turčok: Solution of quasiparabolic differential equations by finite element method. (in Slovak), Thesis, Komenský University Bratislava, (1978).
[13] M. Zlámal:
Finite element methods for nonlinear parabolic equations. R.A.I.R.O. Numer. Anal. 11 (1977), 93-107.
MR 0502073
[14] A. Ženíšek:
Curved triangular finite $C^m$-elements. Apl. Mat. 23 (1978), 346-377.
MR 0502072
[15] A. Ženíšek:
Discrete forms of Friedrichs' inequalities in the finite element method. R.A.I. R. O. Numer. Anal. 15 (1981), 265-286.
MR 0631681 |
Zbl 0475.65072
[16] A. Ženíšek:
Finite element methods for coupled thermoelasticity and coupled consolidation of clay. (To appear in R.A.I.R.O. Numer. Anal. 18 (1984).)
MR 0743885
[17] E. Godlewski A. Puech-Raoult:
Équations d'évolution linéaires du second ordre et méthodes multipas. R.A.I.R.O. Numer. Anal. 13 (1979), 329-353.
MR 0555383