Previous |  Up |  Next

Article

Keywords:
convergence; finite element; Newton boundary condition; simplicial isoparametric elements; error estimates
Summary:
The convergence of the finite element solution for the second order elliptic problem in the $n$-dimensional bounded domain $(n\geq 2)$ with the Newton boundary condition is analysed. The simplicial isoparametric elements are used. The error estimates in both the $H^1$ and $L_2$ norms are obtained.
References:
[1] P. G. Ciarlet: The Finite Element Method for Elliptic Problems. North-Holland. Amsterdam. 1978. MR 0520174 | Zbl 0383.65058
[2] P. G. Ciarlet P. A. Raviart: The combined effect of curved boundaries and numerical integration in isoparametric finite element methods. In: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz Editor). Academic Press. New York and London. 1972. MR 0421108
[3] A. Kufner O. John S. Fučík: Function Spaces. Academia. Praha, 1977. MR 0482102
[4] J. Nečas: Les méthodes directes en théorie des équations elliptiques. Academia. Prague. 1967. MR 0227584
[5] J. Nedoma: The finite element solution of parabolic equations. Apl. Mat., 23 (1977), 408-438. MR 0508545
[6] J. Nedoma: The finite element solution of elliptic and parabolic equations using simplicial isoparametric elements. R.A.I.R.O. Numer. Anal., 13 (1979), 257-289. MR 0543935 | Zbl 0413.65080
[7] K. Rektorys: Variační metody. SNTL. Praha. 1974. English translation: Variational Methods. Reidel Co.. Dordrecht-Boston. 1977. MR 0487653 | Zbl 0371.35001
[8] R. Scott: Interpolated boundary conditions in the finite element method. SIAM J. Numer. Anal., 12 (1975), 404-427. DOI 10.1137/0712032 | MR 0386304 | Zbl 0357.65082
[9] G. Strang: Approximation in the finite element method. Numer. Math., 19 (1972), 81-98. DOI 10.1007/BF01395933 | MR 0305547 | Zbl 0221.65174
[10] M. Zlámal: Curved elements in the finite element method I. SIAM J. Numer. Anal., 10 (1973), 229-240. DOI 10.1137/0710022 | MR 0395263
[11] M. Zlámal: Curved elements in the finite element method II. SIAM J. Numer. Anal., 11 (1974), 347-369. DOI 10.1137/0711031 | MR 0343660
[12] A. Ženíšek: Nonhomogeneous boundary conditions and curved triangular finite elements. Apl. Mat., 26 (1981), 121-141. MR 0612669
[13] A. Ženíšek: Discrete forms of Friedrichs' inequalities in the finite element method. R.A.I.R.O. Numer. Anal., 15 (1981), 265-286. MR 0631681 | Zbl 0475.65072
Partner of
EuDML logo