Article
Keywords:
convergence; finite element; Newton boundary condition; simplicial isoparametric elements; error estimates
Summary:
The convergence of the finite element solution for the second order elliptic problem in the $n$-dimensional bounded domain $(n\geq 2)$ with the Newton boundary condition is analysed. The simplicial isoparametric elements are used. The error estimates in both the $H^1$ and $L_2$ norms are obtained.
References:
[1] P. G. Ciarlet:
The Finite Element Method for Elliptic Problems. North-Holland. Amsterdam. 1978.
MR 0520174 |
Zbl 0383.65058
[2] P. G. Ciarlet P. A. Raviart:
The combined effect of curved boundaries and numerical integration in isoparametric finite element methods. In: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz Editor). Academic Press. New York and London. 1972.
MR 0421108
[3] A. Kufner O. John S. Fučík:
Function Spaces. Academia. Praha, 1977.
MR 0482102
[4] J. Nečas:
Les méthodes directes en théorie des équations elliptiques. Academia. Prague. 1967.
MR 0227584
[5] J. Nedoma:
The finite element solution of parabolic equations. Apl. Mat., 23 (1977), 408-438.
MR 0508545
[6] J. Nedoma:
The finite element solution of elliptic and parabolic equations using simplicial isoparametric elements. R.A.I.R.O. Numer. Anal., 13 (1979), 257-289.
MR 0543935 |
Zbl 0413.65080
[7] K. Rektorys:
Variační metody. SNTL. Praha. 1974. English translation: Variational Methods. Reidel Co.. Dordrecht-Boston. 1977.
MR 0487653 |
Zbl 0371.35001
[12] A. Ženíšek:
Nonhomogeneous boundary conditions and curved triangular finite elements. Apl. Mat., 26 (1981), 121-141.
MR 0612669
[13] A. Ženíšek:
Discrete forms of Friedrichs' inequalities in the finite element method. R.A.I.R.O. Numer. Anal., 15 (1981), 265-286.
MR 0631681 |
Zbl 0475.65072