[1] R. Abrams L. Kerzner:
A simplified test for optimality. Journal of Optimization Theory and Applications. 25 (1978), 161-170.
DOI 10.1007/BF00933262 |
MR 0484413
[2] A. Ben-Israel A. Ben-Tal S. Zlobec:
Optimality in Nonlinear Programming: A Feasible Directions Approach. Wiley-Interscience, New York 1981.
MR 0607673
[3] A. Ben-Israel A. Ben-Tal A. Charnes:
Necessary and sufficient conditions for a Pareto-optimum in convex programming. Econometrica 45 (1977), 811 - 820.
DOI 10.2307/1912673 |
MR 0452684
[4] A. Ben-Israel T. N. E. Greville:
Generalized Inverses: Theory and Applications. Wiley-Interscience, New York 1974.
MR 0396607
[5] B. Brosowski:
On parametric linear optimization. Optimization and Operations Research, Springer Verlag Lecture Notes in Economics and Mathematical Systems No. 157(R. Henn, B. Korte and W. Oettli, editors), Berlin, 1978, pp. 37-44.
MR 0525726 |
Zbl 0405.90072
[6] G. B. Dantzig J. Folkman N. Shapiro:
On the continuity of the minimum set of a continuous function. Journal of Mathematical Analysis and Applications 17 (1967), 519-548.
DOI 10.1016/0022-247X(67)90139-4 |
MR 0207426
[7] I. I. Eremin N. N. Astafiev:
Introduction to the Theory of Linear and Convex Programming. Nauka, Moscow, 1976. (In Russian.)
MR 0475825
[9] A. V. Fiacco:
Convergence properties of local solutions of sequences of mathematical programming problems in general spaces. Journal of Optimization Theory and Applications 13 (1974), 1-12.
DOI 10.1007/BF00935606 |
MR 0334946 |
Zbl 0255.90047
[10] J. Gauvin J. W. Tolle:
Differential stability in nonlinear programming. SlAM Journal on Control and Optimization 15 (1977), 294-311.
DOI 10.1137/0315020 |
MR 0441352
[11] H. J. Greenberg W. P. Pierskalla:
Extensions of the Evans-Gould stability theorems for mathematical programs. Operations Research 20 (1972), 143-153.
DOI 10.1287/opre.20.1.143 |
MR 0316101
[13] W. Krabs:
Stetige Abänderung der Daten bei nichtlinearer Optimierung und ihre Konsequenzen. Operations Research Verfahren XXV 1 (1977), 93-113.
Zbl 0401.90094
[14] B. Kummer:
Global stability of optimization problems. Mathematische Operationsforschung und Statistik, series Optimization (1977).
MR 0478618 |
Zbl 0376.90083
[15] O. Mangasarian:
Nonlinear Programmirg. McGraw-Hill, New York, 1969.
MR 0252038
[17] V. D. Mazurov:
The solution of an ill-posed linear optimization problem under contradictory conditions. Supplement to Ekonomika i Matematičeskii Metody, Collection No. 3 (1972), 17-23. (In Russian.)
MR 0391950
[18] M. Z. Nashed (editor): Generalized Inverses and Applications. Academic Press, New York, 1976.
[19] F. Nožička J. Guddat H. Hollatz B. Bank: Theorie der linearen parametrische Optimierung. Akademie - Verlag, Berlin, 1974.
[20] M. S. A. Osman:
Qualitative analysis of basic notions in parametric convex programming, I. Aplikace Matematiky 22 (1977), 318-332.
MR 0449692 |
Zbl 0383.90097
[21] M. S. A. Osman:
Qualitative analysis of basic notions in parametric convex programming, II. Aplikace Matematiky 22 (1977), 333-348.
MR 0449693 |
Zbl 0383.90098
[22] S. M. Robinson: A characterization of stability in linear programming. MRC Technical Report 1542, University of Wisconsin, Madison (1975).
[24] A. N. Tihonov V. Y. Arsenin:
Solutions of Ill-Posed Problems. Winston, Washington D. C., 1977.
MR 0455365
[26] H. Wolkowicz:
Calculating the cone of directions of constacy. Journal of Optimization Theory and Applications 25 (1978), 451-457.
DOI 10.1007/BF00932906 |
MR 0525723
[27] S. Zlobec:
Marginal values for arbitrarily perturbed convex programs. Glasnik Matematički (1982, forthcoming).
MR 0658001
[28] S. Zlobec A. Ben-Israel: Perturbed convex programs: continuity of optimal solutions and optimal values. Operations Research Verfahren XXXI 1 (1979), 737-749.
[29] S. Zlobec A. Ben-Israel:
Duality in convex programming: a linearization approach. Mathematische Operationsforschung und Statistik, series Optimization 10 (1979), 171 - 178.
DOI 10.1080/02331937908842560 |
MR 0548525
[30] S. Zlobec B. Craven:
Stabilization and determination of the set of minimal binding constraints in convex programming. Mathematische Operationsforschung und Statistik, series Optimization 12 (1981), 203-220,
DOI 10.1080/02331938108842721 |
MR 0619646
[31] S. Zlobec R. Gardner A. Ben-Israel:
Regions of stability for arbitrarily perturbed convex programs. In Mathematical Programming with Data Perturbations I (A. V. Fiacco, ed.), M. Dekker, New York, 1982, 69-89.
MR 0652938