Article
Keywords:
electrical network; homogeneous resistive wire segments; homogeneous electrical field; geometric properties of invariant systems; conductivities; electrical invariance
Summary:
Geometric properties of finite systems of homogeneous resistive wire segments in a Euclidean $n$-space are studied in the case that the absorption of energy of such a system in an arbitrary linear electrical field is invariant under any orthogonal transformation of the system.
References:
[1] M. Fiedler: Über zyklische n-Simplexe und konjugierte Raumvielecke. CMUC 2, 2 (1961, 3-26.
[2] M. Fiedler: Some applications of graphs, matrices and geometry. In: Czechoslovak contributions, Swedish-Czechoslovak seminar on applied mathematics, IVA Stockholm, May 22-23, 1973, 28-36.
[3] M. Fiedler:
Aggregation in graphs. In: Colloquia Math. Soc. Janos Bolyai. 18. Combinatorics, Keszthely 1976, 315-330.
MR 0519274