[1] A. Ambrosetti C. Sbordone:
$\Gamma$-convergenza e G-convergenza per problemi non lineari di tipo ellittici. Bol. Un. Mat. Ital. A(5), 13 (1976), 352-362.
MR 0487703
[2] I. Babuška:
Solution of interface problems by homogenization I, II, III. SIAM J. Math. Anal., 7(1976), 603-634 (I), 635-645 (II), 8(1977), 923-937 (III).
DOI 10.1137/0507048 |
MR 0509273
[3] I. Babuška:
Homogenization and its application. Mathematical and computational problems. Numerical solution of partial differential equations, III. (Proc. Third Sympos. (SYNSPADE), Univ. Maryland, College Park, Md., 1975), 89-116, Academic Press, New York, 1976.
MR 0502025
[4] N. S. Bahvalov:
The averaging of partial differential equations with rapidly oscillating coefficients. (Russian) Problems in mathematical physics and numerical mathematics (Russian), 34-51, 323, "Nauka", Moscow, 1977.
MR 0521167
[5] A. Bensoussan J. L. Lions G. Papanicolaou:
Asymptotic analysis for periodic structures. North Holland 1978.
MR 0503330
[6] V. L. Berdičevskij:
On averaging of periodic structures. (Russian), Prikl. Mat. Meh., 41 (1977), 6, 993-1006.
MR 0529542
[7] M. Biroli:
G-convergence for elliptic equations, variational inequalities and quasivariational inequalities. Rend. Sem. Mat. Fis. Milano, 47 (1977), 269 - 328.
DOI 10.1007/BF02925757 |
MR 0526888
[8] J. F. Bourgat:
Numerical experiments of the homogenization method for operators with periodic coefficients. IRIA-LABORIA Report, no. 277 (1978); Computing methods in applied sciences and engineering (Proc. Third Internat. Sympos., Versailles, 1977), I, 330-356, Lecture Notes in Math., 704, Springer, Berlin, 1979.
MR 0540121
[9] J. F. Bourgat A. Dervieux: Méthode d'homogénéisation de opérateurs à coefficients périodiques: Etude des correcteurs provenant du développement asymptotique. IRIA-LABORIA Report, n. 278 (1978).
[10] E. De Giorgi:
Convergence problems for functional and operators. Proceedings of the International Meeting on Recent Methods in Non-linear Analysis (Rome, 1978), 131 - 188, Pitagora, Bologna, 1979.
MR 0533166
[11] P. Marcellini:
Periodic solutions and homogenization of nonlinear variational problems. Ann. Mat. Appl. (4). 117 (1978), 139-152.
MR 0515958
[12] J. Nečas:
Les méthodes directes en théorie des équations elliptiques. Academia, Prague 1967.
MR 0227584
[13] J. Nečas I. Hlaváček:
Mathematical theory of elastic and elastico-plastic bodies: An introduction. Elsevier, Amsterdam 1981.
MR 0600655
[14] Ha Tien Ngoan: On convergence of solutions of boundary value problems for sequence of elliptic systems. (Russian), Vestnik Moskov. Univ. Ser. I Mat. Meh., 5 (1977), 83 - 92.
[16] S. Spagnolo:
Convergence in energy for elliptic operators. Numerical solution of partial differential equations, III. (Proc. Third Sympos. (SYNSPADE), Univ. Maryland, College Park, Md., 1975), 469-498. Academic Press, New York, 1976.
MR 0477444
[17] P. M. Suquet:
Une méthode duále en homogénéisation. Application aux milieux élastiques périodiques. C. R. Acad. Sci. Paris Sér. A, 291 (1980), 181 - 184.
MR 0605012 |
Zbl 0491.73024
[18] V. V. Žikov S. M. Kozlov O. A. Olejnik, Ha Tien Ngoan:
Homogenization and G-convergence of differential operators. (Russian), Uspehi Mat. Nauk, 34 (1979), 5 (209), 65-133.
MR 0562800
[19] P. M. Suquet:
Une méthode duále en homogénéisation: Application aux milieux élastiques. Submitted to J. Mécanique.
Zbl 0516.73016