Previous |  Up |  Next

Article

Keywords:
Kronecker sum; latent roots
Summary:
Kronecker sums and matricial norms are used in order to give a method for determining upper bounds for $\left|A\right|$ where $A$ is a latent root of a lambda-matrix. In particular, upper bounds for $\left|z\right|$ are obtained where $z$ is a zero of a polynomial with complex coefficients. The result is compared with other known bounds for $\left|z\right|$.
References:
[1] S. Barnet: Matrices in control theory. Van Nostrand. London 1971. MR 0364275
[2] R. Bellman: Introduction to matrix analysis. 2nd. edit. Mc-Graw Hill, New York, 1970. MR 0258847 | Zbl 0216.06101
[3] J. E. Dennis (JR) J. F. Traub R. P. Weber: On the matrix polynomial, lambda-matrix and eigenvalue problems. Technical Report 71 - 109, Depart. Computer Science, Cornell Univ. 1971.
[4] E. Deutsch: Matricial norms. Numer. Math. 16 (1970), 73 - 84. DOI 10.1007/BF02162408 | MR 0277552 | Zbl 0206.35801
[5] E. Deutsch: Matricial norms and the zeros of polynomials. Lin. Alg. Appl. 6 (1973), 143 to 148. DOI 10.1016/0024-3795(73)90012-8 | MR 0311877
[6] F. R. Dias Agudo: Sobre a equação caracteristica duma matriz. Rev. Fac. Cienc. (Lisboa). Vol. III (1953-1954), 87-136.
[7] K. G. Guderley: On non linear eigenvalue problems for matrices. J. Ind. and Appl. Math. 6 (1958), 335-353. DOI 10.1137/0106024
[8] P. Lancaster: Theory of Matrices. Academic Press, New York, 1969. MR 0245579 | Zbl 0186.05301
[9] M. Marden: Geometry of polyomials. American Mathematical Society, Providence, Rhode Island, 2nd. edition, (Math. Survey n° 3), 1966. MR 0225972
[10] D. S. Mitrinovic: Analytic inequalities. Springer-Verlag, Berlin, 1970. MR 0274686 | Zbl 0199.38101
[11] M. Parodi: La localisation des valeurs caractéristiques des matrices et ses applications. Gauthier-Villars, Paris, 1969.
[12] F. Robert: Normes vectorielles de vecteurs et de matrices. R.F.T.I. - CHIFFRES, 7, 4 (1964), 261-299. MR 0205433
[13] F. Robert: Sur les normes vectorielles régulières sur un espace de dimension finie. C.R.A.S. Paris, 261 (1965), 5173-5176. MR 0192317
[14] F. Robert: Matrices non-negatives et normes vectorielles. (Cours D.E.A.). Université Scientifique et Médicale, Lyon, 1973.
[15] J. Vitória: Normas vectoriais de vectores e de matrizes. Report. Univ. Lourenço Marques (Mozambique), 1974.
[16] J. Vitória: Matricial norms and lambda-matrices. Rev. Cienc. Mat. (Maputo, Mozambique), 5 (1974-75), 11-30. MR 0457466
[17] J. Vitória: Matricial norms and the differences between the zeros of determinants with polynomial elements. Lin. Alg. its Appl. 28 (1979), 279-283. DOI 10.1016/0024-3795(79)90139-3 | MR 0549440
Partner of
EuDML logo