[1] H. Hertz: Miscellaneous Papers. Mc Millan, London 1896.
[3] T. F. Conry, A. Seireg:
A mathematical programming method for design of elastic bodies in contact. J.A.M. ASME, 2 (1971), 387-392.
DOI 10.1115/1.3408787
[4] A. Francavilla, O. C. Zienkiewicz:
A note on numerical computation of elastic contact problems. Intern. J. Numer. Meth. Eng. 9 (1975), 913 - 924.
DOI 10.1002/nme.1620090410
[6] P. D. Panagiotopoulos:
A nonlinear programming approach to the unilateral contact - and friction - boundary value problem in the theory of elasticity. Ing. Archiv 44 (1975), 421 to 432.
DOI 10.1007/BF00534623 |
MR 0426584 |
Zbl 0332.73018
[7] G. Duvaut:
Problèmes de contact entre corps solides deformables. Appl. Meth. Fund. Anal. to Problems in Mechanics, (317 - 327), ed. by P. Germain and B. Nayroles, Lecture Notes in Math., Springer-Verlag 1976.
MR 0669228 |
Zbl 0359.73017
[9] A. Signorini:
Questioni di elasticità non linearizzata o serni-linearizzata. Rend. di Matem. e delle sue appl. 18 (1959).
MR 0118021
[10] G. Fichera: Boundary value problems of elasticity with unilateral constraints. Encycl. of Physics (ed. by S. Flugge), vol. VIa/2, Springer-Verlag, Berlin 1972.
[12] J. Nečas:
On regularity of solutions to nonlinear variational inequalities for second-order elliptic systems. Rend. di Matematica 2, (1975), vol. 8, Ser. Vl, 481 - 498.
MR 0382827
[13] J. Nečas, I. Hlaváček:
Matematická teorie pružných a pružně plastických těles. SNTL Praha (to appear). English translation: Mathematical theory of elastic and elastoplastic bodies. Elsevier, Amsterdam 1980.
MR 0600655