Previous |  Up |  Next

Article

Keywords:
evolutionary variational inequalities; flow theory of plasticity; penalty method
Summary:
An abstract theory of evolutionary variational inequalities and its applications to the traction boundary value problems of elastoplasticity are studied, using the penalty method to prove the existence of a solution.
References:
[1] G. Duvaut J. L. Lions: Les inéquations en méchanique et en physique. Dunod, Paris 1972. MR 0464857
[2] Q S. Nguyen: Materiaux élastoplastiques écrouissables. Arch. of Mech. 25, 1973, p. 695.
[3] K. Gröger: Quasi-static and dynamic behaviour of elastic-plastic materials. To appear.
[4] J. Kratochvíl J. Nečas: On the solution of the traction boundary-value problem for elastic-inelastic materials. CMUC 14 (4), 1973, 755-760. MR 0337100
[5] I. Hlaváček J. Nečas: On inequalities of Korn's type. Part I, II. Archive for Rat. Mech. and Anal., Vol. 36, No. 4, 1970, 305-334. DOI 10.1007/BF00249518 | MR 0252844
[6] J. Nečas: Les méthodes directes en théorie des équations elliptiques. Academia, Praha 1967. MR 0227584
[7] S. Fučík J. Nečas V. Souček: Introduction to variational calculus. (Czech.) Lecture Notes of Prague University, 1972.
[8] K. Washizu: Variational methods in elasticity and plasticity. Pergamon Press, 1968. MR 0391679 | Zbl 0164.26001
[9] J. Nečas: On the formulation of the traction problem for the flow theory of plasticity. Apl. mat. 18 (2), 1973, 119-127. MR 0314342
[10] I. Hlaváček J. Nečas: Introduction to the mathematical theory of elastic and elastic-plastic bodies. (Czech.), Praha (to appear).
[11] N. Bourbaki: Integration. Paris 1965. Zbl 0136.03404
Partner of
EuDML logo