Article
Keywords:
density of solenoidal functions; convergence of a dual finite element method; Dirichlet, Neumann and a mixed boundary value problem; second order elliptic equation
Summary:
A proof is given of the following theorem: infinitely differentiable solenoidal vector - functions are dense in the space of functions, which are solenoidal in the distribution sense only. The theorem is utilized in proving the convergence of a dual finite element procedure for Dirichlet, Neumann and a mixed boundary value problem of a second order elliptic equation.
References:
[1] J. Haslinger I. Hlaváček:
Convergence of a finite element method based on the dual variational formulation. Apl. mat. 21 (1976), 43 - 65.
MR 0398126
[2] B. Fraeijs de Veubeke M. Hogge:
Dual analysis for heat conduction problems by finite elements. Int. J. Numer. Meth. Eng. 5 (1972), 65 - 82.
DOI 10.1002/nme.1620050107
[3] J. Nečas:
Les méthodes directes en théorie des équations elliptiques. Academia, Prague 1967.
MR 0227584
[4] O. A. Ladyzenskaya:
The mathematical theory of viscous incompressible flow. Gordon & Breach, New York 1969.
MR 0254401