Previous |  Up |  Next

Article

Keywords:
spherical-harmonics method; neutron transport equation; approximation of solution
Summary:
This paper concerns $l$-velocity model of the general linear time-dependent transport equation. The assumed probability of the collision (scattering, fission) depends only on the angle of the directions of the moving neutron before and after the collision. The weak formulation of the problem is given and a priori estimates are obtained. The construction of an approximate problem by $\text {P_L}$-method is given. In the symmetric hyperbolic system obtained by $\text {P_L}$-method dissipativity and $\Cal A$-orthogonality of the relevant boundary spaces are proved and the connection with the mono-velocity model of the transport equation studied in papers by U.M. Sultangazin and S.K. Godunov is shown. The work is concluded by the proof of the weak convergence of the $\text {P_L}$-method.
References:
[1] Г. И. Марчук В. И. Лебедев: Численные методы в теории переноса нейтронов. Атомзидат, Москва 1972. Zbl 1225.01023
[2] В. I. Bell S. Glasstone: Nuclear Reactor Theory. 1970. (Russian translation - Moscow Atomizdat 1974).
[3] J. Nečas: Les méthodes directes en théorie des équations elliptiques. Academia, Praha 1967. MR 0227584
[4] В. С. Владимиров: Математические задачи односкоростной теории переноса нейтронов. Труды математического института им. В. И. Стеклова AHCCCP, № 59 (1961), 3-154. Zbl 1160.68305
[5] У. M. Султангазип: Дифференциальные свойства решений смешаной задачи Коши для нестационарного кинетического уравнения. ВЦ СО АН СССР (препринт), Новосибирск 1971. Zbl 1168.35423
[6] И. Марек: Некоторые математические задачи теопри ядерных реакторов на быстрых нейтронах. Aplikace matematiky 8, с. 6 (1963), 442-467. Zbl 1145.93303
[7] С. К. Годунов, У M. Султангазин: О диссипативности граничных условий Владимирова для симметрической системы метода сферических гармоник. ЖВМ и МФ 11, № 3 (1971), 688-704. MR 0298229 | Zbl 1230.35094
[8] У. M. Султангазин: К вопросу о сходимости метода сферических гармоник для нестационарного уравнения переноса. ЖВМ и МФ 14, № 1 (1974), 166-178. MR 0342108 | Zbl 1168.37322
[9] С. Мика У. M. Султангазин: Сходимость метода сферических гармоник для многогруппового кинетического уравнения. Численные методы механики сплошной среды> СО АН СССР, том 6, № 4 (1975), 69-85. MR 0676650 | Zbl 1231.90252
[10] S. Mika: Approximation of the solution of the multi-group neutron transport equation in the slab geometry. Proceedings of "Software and algorithms of the numerical mathematics", JČMF 1975, 150-159, (in Czech).
[11] K. O. Friedrichs: Symmetric positive linear differential equations. Comm. Pure Appl. Math. 11 (1958), 333-418. MR 0100718 | Zbl 0083.31802
[12] K. O. Friedrichs P. D. Lax: Boundary Value Problems for First Order Operators. Comm. Pure Appl. Math. 18 (1965), 355-388. MR 0174999
[13] C. V. Pao: On Nonlinear Time-Dependent Multivelocity Transport Equations. Journal of Math. Anal. and Appl. 44 (1973), 725-744. MR 0337238 | Zbl 0267.45020
[14] P. Lesaint: Finite Element Method for Symmetric Hyperbolic Equations. Numerische Mathematik 21 (1973), 244-255. DOI 10.1007/BF01436628 | MR 0341902
[15] А. Ш. Акишев У. M. Султангазин: О сильной сходимости метода сферических гармоник для кинетического уравнения переноса в случае сферической симметрии. Сборник ,,Математика и механика 8, Алма-Ата 1974, 12-18. Zbl 1235.49003
[16] S. Mika: Approximation of the solution of the multi-group time-dependent neutron transport equation by $P_L$-method. KMA VŠSE Plzeň 1976 (Dissertation - in Czech).
[17] A. Douglis: The Solutions of Multidimensional Generalized Transport Equation and Their Calculation by Difference Methods. Numerical Solution of Partial Differential Equations ed. by Bramble. Academic Press, New York 1965, 197-256. MR 0205026
[18] D. G. Wilson: Time Dependent Linear Transport I. Existence, Uniqueness and Continuous Dependence. Journal of Math. Anal. and Appl. 47 (1974), 182-209. DOI 10.1016/0022-247X(74)90047-X | MR 0343821 | Zbl 0307.45011
[19] S. Ukai: Solution of Multi-Dimensional Neutron Transport Equation by Finite Element Method. Journal of Nuclear Science and Technology 9 (1972), 366-373. DOI 10.1080/18811248.1972.9734860 | MR 0311268
Partner of
EuDML logo