Previous |  Up |  Next

Article

Keywords:
evolution inequalities of a modified Navier-Stokes type; motion of a fluid through a tube; boundary conditions; existence; uniqueness; regularity
Summary:
This is the last from a series of three papers dealing with variational equations of Navier-Stokes type. It is shown that the theoretical results from the preceding parts (existence and regularity of solutions) can be applied to the problem of motion of a fluid through a tube.
References:
[1] Golovkin K. K.: New model equations of the motion of a viscous fluid and their unique solvability. (Russian). Trudy Mat. Inst. Akad. Nauk SSSR, СII (1967), 29-50. MR 0232570
[2] Kaniel S.: On the initial value problem for an incompressible fluid with nonlinear viscosity. J. Math. Mech., 19 (1970), 681-707. MR 0253629 | Zbl 0195.10801
[3] Ladyshenskaja O. A.: On new equations for describing the motion of viscous, incompressible fluids and the global solvability of their boundary value problems. (Russian). Trudy Mat. Inst. Akad. Nauk SSSR, CII (1967), 85 - 104.
[4] Ladyshenskaja O. A.: On modifications of the Navier-Stokes equations with big gradient of velocity. (Russian). Zap. Nauch. Sem. Leningr. Ot. Mat. Inst., 7 (1968), 126-154. MR 0241832
[5] Ladyshenskaja O. A.: Mathematical problems in the dynamics of viscous, incompressible fluids. (Russian). 2nd edition, Moscow 1970.
[6] Lions J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Paris 1969. MR 0259693 | Zbl 0189.40603
[7] Müller M., Naumann J.: On evolution inequalities of a modified Navier-Stokes type, I. Apl. Mat. 23 (1978), 208 - 230. MR 0482433
[8] Müller M., Naumann J.: On evolution inequalities of a modified Navier-Stokes type, II. Apl. Mat. 23 (1978), 397-407, MR 0508544
[9] Nečas J.: Les méthodes directes en théorie des équations elliptiques. Prague 1967. MR 0227584
[10] Prouse G.: On a unilateral problem for the Navier-Stokes equations. Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat., (8) 52 (1972); Nota I: 337-342; Nota II: 467-478. MR 0342882 | Zbl 0253.35067
[11] Temam R.: On the theory and numerical analysis of the Navier-Stokes equations. University of Maryland, 1973, Orsay. Zbl 0273.35002
Partner of
EuDML logo