[1] P. G. Ciarlet, A. P. Raviart:
The combined effect of curved boundaries and numerical integration in isoparametric finite element methods. In A. K. Aziz: The mathematical foundations of the finite element method with applications to partial differential equations. Academic Press. New York and London. 1972.
MR 0421108 |
Zbl 0262.65070
[2] P. A. Raviart:
The use of numerical integration in finite element methods for solving parabolic equations. Lecture presented at the Conference on Numerical Analysis. Royal Irish Academy. Dublin, August 14-18, 1972.
MR 0345428
[3] Jindřich Nečas:
Les Méthodes Directe en Théorie des Equations Elliptiques. Mason. Paris. 1967.
MR 0227584
[4] V. J. Smirnov: Kurs vyššej matěmatiki. tom V. Gosudarstvěnnoje izdatělstvo fiziko-matěmatičeskoj litěratury. Moskva. 1960.
[6] Miloš Zlámal:
Curved Elements in the Finite Element Method I. SIAM J. Numer. Anal., 10. No 1 (1973), 229-240.
DOI 10.1137/0710022 |
MR 0395263
[7] Miloš Zlámal:
Curved Elements in the Finite Element Methods II. SIAM J. Numer. Anal., 11. No 2 (1974), 347-362.
DOI 10.1137/0711031 |
MR 0343660
[9] T. Dupont G. Fairweather J. P. Johnson:
Three-level Galerkin Methods for Parabolic Equations. SIAM J. Numer. Anal., 11, No 2 (1974).
MR 0403259
[11] Miloš Zlámal:
Finite element methods for nonlinear parabolic equations. R.A.I.R.O. Analyse numérique/Numerical Analysis, 11, No 1 (1977), 93-107.
MR 0502073