Previous |  Up |  Next

Article

Keywords:
error bounds; approximate solutions; parabolic equations; arbitrary curved domains; quadrature formulas; optimal order of convergence
Summary:
In contradistinction to former results, the error bounds introduced in this paper are given for fully discretized approximate soltuions of parabolic equations and for arbitrary curved domains. Simplicial isoparametric elements in $n$-dimensional space are applied. Degrees of accuracy of quadrature formulas are determined so that numerical integration does not worsen the optimal order of convergence in $L_2$-norm of the method.
References:
[1] P. G. Ciarlet, A. P. Raviart: The combined effect of curved boundaries and numerical integration in isoparametric finite element methods. In A. K. Aziz: The mathematical foundations of the finite element method with applications to partial differential equations. Academic Press. New York and London. 1972. MR 0421108 | Zbl 0262.65070
[2] P. A. Raviart: The use of numerical integration in finite element methods for solving parabolic equations. Lecture presented at the Conference on Numerical Analysis. Royal Irish Academy. Dublin, August 14-18, 1972. MR 0345428
[3] Jindřich Nečas: Les Méthodes Directe en Théorie des Equations Elliptiques. Mason. Paris. 1967. MR 0227584
[4] V. J. Smirnov: Kurs vyššej matěmatiki. tom V. Gosudarstvěnnoje izdatělstvo fiziko-matěmatičeskoj litěratury. Moskva. 1960.
[5] Miloš Zlámal: Finite Element Multistep Discretizations of Parabolic Boundary Value Problems. Mathematics of Computation, 29, Nr 130 (1975), 350-359. DOI 10.1090/S0025-5718-1975-0371105-2 | MR 0371105
[6] Miloš Zlámal: Curved Elements in the Finite Element Method I. SIAM J. Numer. Anal., 10. No 1 (1973), 229-240. DOI 10.1137/0710022 | MR 0395263
[7] Miloš Zlámal: Curved Elements in the Finite Element Methods II. SIAM J. Numer. Anal., 11. No 2 (1974), 347-362. DOI 10.1137/0711031 | MR 0343660
[8] Miloš Zlámal: Finite Element Methods for Parabolic Equations. Mathematics of Computation, 28, No 126 (1974), 393-404. DOI 10.1090/S0025-5718-1974-0388813-9 | MR 0388813
[9] T. Dupont G. Fairweather J. P. Johnson: Three-level Galerkin Methods for Parabolic Equations. SIAM J. Numer. Anal., 11, No 2 (1974). MR 0403259
[10] M. Lees: A priori estimates for the solutions of difference approximations to parabolic differential equations. Duke Math. J., 27 (1960), 287-311. DOI 10.1215/S0012-7094-60-02727-7 | MR 0121998
[11] Miloš Zlámal: Finite element methods for nonlinear parabolic equations. R.A.I.R.O. Analyse numérique/Numerical Analysis, 11, No 1 (1977), 93-107. MR 0502073
[12] W. Liniger: A criterion for A-stability of linear multistep integration formulae. Computing, 3 (1968), 280-285. DOI 10.1007/BF02235394 | MR 0239763 | Zbl 0169.19902
Partner of
EuDML logo