Previous |  Up |  Next

Article

Keywords:
existence and regularity of solutions; boundary value problems; viscous incompressible fluid; modified Navier-Stokes equations; evolution inequalities; Faedo-Galerkin approximation
Summary:
The paper present an existence theorem for a strong solution to an abstract evolution inequality where the properties of the operators involved are motivated by a type of modified Navier-Stokes equations under certain unilateral boundary conditions. The method of proof rests upon a Galerkin type argument combined with the regularization of the functional.
References:
[1] Biroli M.: Sur l'inéquation d'évolution de Navier-Stokes. Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat., (8) 52 (1972); Nota I: 457-459; Nota II: 591-598; Nota III: 811-820. MR 0399675 | Zbl 0249.35073
[2] Biroli M.: Sur la solution faible des inéquations d'évolution du type de Navier-Stokes avec convexe dépendant du temps. Boll. U. M. I., (4) 11 (1975), 309-321. MR 0420034 | Zbl 0307.35074
[3] Brézis H.: Inéquations variationnelles relatives à l'opérateur de Navier-Stokes. J. Math. Anal. Appl., 39 (1972), 159-165. DOI 10.1016/0022-247X(72)90231-4 | MR 0312349 | Zbl 0238.35068
[4] Brézis H.: Opérateurs maximaux monotones et semigroupes de contractions dans les escapes de Hilbert. Math. Studies 5, North Holland, 1973.
[5] Ladyshenskaja O. A.: On new equations for describing the motion of viscous, incompressible fluids and the global solvability of their boundary value problems. (Russian). Trudy Mat. Inst. Akad. Nauk SSSR, СII (1967), 85-104.
[6] Ladyshenskaja O. A.: On modifications of the Navier-Stokes equations with big gradient of velocity. (Russian). Zap. Nauch. Sem. Leningr. Ot. Mat. Inst., 7 (1968), 126-154. MR 0241832
[7] Lions J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Paris 1969. MR 0259693 | Zbl 0189.40603
[8] Prouse G.: On a unilateral problem for the Navier-Stokes equations. Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat., (8) 62 (1972); Nota I: 337-342; Nota II: 467-478. MR 0342882 | Zbl 0253.35067
[9] Yosida K.: Functional analysis. Berlin, Göttingen, Heidelberg 1965. MR 0180824 | Zbl 0126.11504
Partner of
EuDML logo