Article
Keywords:
existence and regularity of solutions; boundary value problems; viscous incompressible fluid; modified Navier-Stokes equations; evolution inequalities; Faedo-Galerkin approximation
Summary:
The paper present an existence theorem for a strong solution to an abstract evolution inequality where the properties of the operators involved are motivated by a type of modified Navier-Stokes equations under certain unilateral boundary conditions. The method of proof rests upon a Galerkin type argument combined with the regularization of the functional.
Related articles:
References:
[1] Biroli M.:
Sur l'inéquation d'évolution de Navier-Stokes. Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat., (8) 52 (1972); Nota I: 457-459; Nota II: 591-598; Nota III: 811-820.
MR 0399675 |
Zbl 0249.35073
[2] Biroli M.:
Sur la solution faible des inéquations d'évolution du type de Navier-Stokes avec convexe dépendant du temps. Boll. U. M. I., (4) 11 (1975), 309-321.
MR 0420034 |
Zbl 0307.35074
[4] Brézis H.: Opérateurs maximaux monotones et semigroupes de contractions dans les escapes de Hilbert. Math. Studies 5, North Holland, 1973.
[5] Ladyshenskaja O. A.: On new equations for describing the motion of viscous, incompressible fluids and the global solvability of their boundary value problems. (Russian). Trudy Mat. Inst. Akad. Nauk SSSR, СII (1967), 85-104.
[6] Ladyshenskaja O. A.:
On modifications of the Navier-Stokes equations with big gradient of velocity. (Russian). Zap. Nauch. Sem. Leningr. Ot. Mat. Inst., 7 (1968), 126-154.
MR 0241832
[7] Lions J. L.:
Quelques méthodes de résolution des problèmes aux limites non linéaires. Paris 1969.
MR 0259693 |
Zbl 0189.40603
[8] Prouse G.:
On a unilateral problem for the Navier-Stokes equations. Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat., (8) 62 (1972); Nota I: 337-342; Nota II: 467-478.
MR 0342882 |
Zbl 0253.35067