Previous |  Up |  Next

Article

Keywords:
a priori estimates; convergence; dual finite element procedure; parital differential equations; semi-coercive boundary value problems; elliptic type
References:
[1] Hlaváček I.: Dual finite element analysis for unilateral boundary value problems. Apl. mat, 22(1977), 14-51. MR 0426453
[2] Hlaváček I.: Dual finite element analysis for elliptic problems with obstacles on the boundary I. Apl. mat. 22 (1977), 244-255 MR 0440958
[3] Mosco U., Strang G.: One-sided approximations and variational inequalities. Bull. Amer. Math. Soc. 80 (1974), 308-312. DOI 10.1090/S0002-9904-1974-13477-4 | MR 0331818
[4] Duvaut G., Lions J. L.: Les inéquations en mécanique et en physique. Dunod, Paris 1972. MR 0464857 | Zbl 0298.73001
[5] Haslinger J., Hlaváček I.: Convergence of a finite element method based on the dual variational formulation. Apl. mat. 21 (1976), 43 - 65. MR 0398126
[6] Céa J.: Optimisation, théorie et algorithmes. Dunod, Paris 1971. MR 0298892
[7] Falk R. S.: Error estimates for the approximation of a class of variational inequalities. Math. Соmр. 28 (1974), 963-971. MR 0391502 | Zbl 0297.65061
[8] Fichera G.: Boundary value problems of elasticity with unilateral constraints. Encycl. of Physics (ed. S. Flügge), vol. VI a/2. Springer, Berlin 1972.
[9] Nečas J.: Les méthodes directes en théorie des équations elliptiques. Academia, Prague 1967. MR 0227584
Partner of
EuDML logo