Previous |  Up |  Next

Article

Summary:
In diesem Beitrag entwickeln wir in einer einheitlichen Darstellung notwendige und hinreichende Bedingungen für die Konvexität, Pseudokonvexität und Quasikonvexität einer quadratischen Funktion über einer beliebigen konvexen Teilmenge des $n$-dimensionalen Euklidischen Raumes.
References:
[1] Arrow K. J., Enthoven A. C.: Quasi-concave programming. Econometrica 29 (1961), 779-800. DOI 10.2307/1911819 | MR 0138509 | Zbl 0104.14302
[2] Cottle R. W.: On the convexity of quadratic forms over convex sets. Operations Research 15 (1967), 170-172. DOI 10.1287/opre.15.1.170 | Zbl 0152.20801
[3] Cottle R. W., Ferland J. A. : Matrix theoretic criteria for the quasi-convexity and pseudo-convexity of quadratic functions. Linear Algebra and its Applications 5 (1972), 123- 136. MR 0301038 | Zbl 0241.90045
[4] Cottle R. W., Ferland J. A.: On pseudo-convex functions of nonnegative variables. Mathematical Programming 1 (1971), 95- 101. DOI 10.1007/BF01584075 | MR 0290801 | Zbl 0227.90040
[5] Elster K. H.: Ergebnisse und Probleme der nichtlinearen Optimierung. Wiss. Z. d. Technischen Hochschule Ilmenau 15 (1969), 37-61. MR 0286494 | Zbl 0181.22801
[6] Ferland J. A.: Quasi-convex and pseudo-convex functions on solid convex sets. Techn. Rept. No 71884, Operations Research House, Stanford University, Stanford, Calif. (April 1971). MR 2621328
[7] Ferland J. A.: A maximal domains of quasi-convexity and pseudo-convexity for quadratic functions. Mathematical Programming 3 (1972), 178-192. DOI 10.1007/BF01584988 | MR 0313279
[8] Ferland J. A.: Mathematical programming problems with quasi-convex objective functions. Mathematical Programming 3 (1972), 296 - 301. DOI 10.1007/BF01585002 | MR 0317771 | Zbl 0256.90046
[9] Gerencsér L.: On a close relation between quasiconvex and convex functions and related investigations. Math. Operationsforsch. u. Statist. 4(1973), 197-182. MR 0489904
[10] Keri K.: An examination of nonnegativity and quasiconvexity conditions of quadratic forms on the nonnegative orthant. Studia Scientarum Mathematicarum Hungarica 7 (1972), 11 - 20. MR 0314866 | Zbl 0265.90035
[11] Mangasarian O. L.: Pseudo-convex functions. SIAM Journal on Control 3 (1965), 281 - 290. MR 0191659 | Zbl 0138.15702
[12] Mangasarian O. L.: Convexity, pseudo-convexity and quasiconvexity of composite functions. Cahiers du Centre d'Etudes de Recherche Opérationelle 12 (1970), 114- 122. MR 0285276
[13] Martos B.: Subdefinit matrices and quadratic forms. SIAM Journal on Applied Mathematics 17 (1969), 1215-1223. DOI 10.1137/0117112 | MR 0260431
[14] Martos B.: Quadratic programming with a quasi-convex objective function. Operations Research 19 (1971), 87 - 97. DOI 10.1287/opre.19.1.87 | MR 0274034
[15] Martos В.: Quasi-convexity and quasi-monocity in nonlinear programming. Studia Scientarium Mathematicarum Hungarica 2 (1967), 265 - 273. MR 0224375
[16] Orden A.: Minimization of indefinit quadratic functions with linear constraints. in: Recent advances in mathematical programming. Graves, R. L., Wolfe, P. (ed.) New York 1963.
[17] Ponstein J.: Seven kinds of convexity. SIAM Review 9 (1967), 115-119. DOI 10.1137/1009007 | MR 0213961 | Zbl 0164.06501
[18] Schaible S.: Beträge zur quasikonvexen Programmierung. Dissertation, Köln 1971
[19] Schaible S.: Quasi-concave, strictly quasiconcave and pseudo-concave functions. in: Operations Research Verfahren, Henn, R., Künzi, H. P., Schubert, H. (ed.), Meiseuheim 1973.
[20] Stoer J., Witzgall Ch.: Convexity and Optimization in Finite Dimensions I. Springer-Verlag, Berlin-Heidelberg-New York 1970. MR 0286498
[21] Swarup K.: Programming with indefinit quadratic functions with linear constraints. Cahiers du Centre d'Etudes de Recherche Opérationelle 8 (1966), 132-136.
[22] Swarup K.: Indefinit quadratic programming with nonlinear constraints. ZAMM 47 (1967), 411-413. DOI 10.1002/zamm.19670470610 | MR 0219314
[23] Swarup K.: Indefinit quadratic programming with a quadratic constraint. Ekonom.-Mat. Obzor 4 (1968), 69-75. MR 0235852
[24] Tammer K.: Über eine Klasse von verallgemeinerten quadratischen Optimierungsproblemen mit nichtkonvexer Zielfunktion, die auf quasi- bzw. pseudokonvexe Probleme zurückführbar sind. Aplikace matematiky, eingereicht 1974.
Partner of
EuDML logo