Article
Summary:
The aim of the paper is to investigate queueing systems of the type $M/Mn$ (in equilibrium) in which customers to be served are selected from the queue: with fixed probabilities either the first customer or the last one is chosen. Using the standard method of generating functions the waiting time distribution and the outtaking probabilities are derived.
References:
[4] O. Vašíček:
Poznámka k čekací disciplíně v systémech hromadné obsluhy. Aplikace matematiky, 10 (1965), 423 - 427.
MR 0205350
[5] F. Zítek:
Über die Kundenreihenfolge in Bedienungssystemen. Aplikace matematiky, 15 (1970), 356-383.
MR 0267667
[6] F. Zítek:
Über die Kundenreihenfolge in Systemen $M/E_r/1$. Aplikace matematiky, 17 (1972), 191-208.
MR 0297041
[7] F. Zítek:
Sur l'ordre des clients dans les systèmes d'attente. Proceedings of the Fourth Conference on Probability Theory - Braşov, September 1971. Editura Academiei R. S. R., Bucureşti 1973, 607-619.
MR 0405641
[8] F. Zítek: On a class of queue disciplines. Proceedings of the Fifth Conference on Probability Theory - Braşov, September 1974. (In print.)