Article
Summary:
Let $\{\omega_y\}$ be a system of infinitely smooth rapidly decreasing functions and $\eta (h)$ a certain increasing function, $\eta (0)=0$. Then the approximation sought in the form $\sum c_k\omega_{\eta(h)}((x/h-k)\eta(h))$ is universal, i.e., for any approximated function $f$, the system $\{\omega_y\}$ of hill functions gives the best possible order of approximation limited only by the smoothness of $f$.
Moreover, the system $\{\omega_y\}$ can be chosen so that the Fourier transform of $\omega_y$ has zeros at the points $\pm2\pi j/y; j=1,\ldots, J$. As a consequence, the error of the approximation decreases.
References:
[1] I. Babuška:
Approximation by hill functions. Comment. Math. Univ. Carolinae 11 (1970), 787-811.
MR 0292309
[3] I. Babuška J. Segethová K. Segeth: Numerical experiments with the finite element method I. Tech. Note BN-669, Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, August 1970.
[5] J. L. Lions E. Magenes:
Problèmes aux limites non homogènes et applications. Vol. 1. Dunod, Paris 1968.
MR 0247243
[6] J. Nečas:
Les méthodes directes en théorie des équations elliptiques. Academia, Prague 1967.
MR 0227584
[7] K. Segeth:
Universal approximation by hill functions. Czechoslovak Math. J. 22 (1972), 612-640.
MR 0310502 |
Zbl 0247.41011
[8] K. Segeth:
A remark on a class of universal hill functions. Acta Univ. Carolinae-Math. et Phys. 15 (1974), No. 1 - 2, to appear.
MR 0390598
[9] G. Strang G. J. Fix:
An analysis of the finite element method. Prentice-Hall, Englewood Cliffs, N. J. 1973.
MR 0443377