Previous |  Up |  Next

Article

Summary:
A procedure is given which will give the necessary and sufficient conditions for the existence of a solution to the multi-index problem of any given dimensions. It is shown that the number of such conditions is finite, and that the conditions provide lower bounds to functions of the unknowns of the problem.
References:
[1] M. L. Balinski: An Algorithm for Finding all Vertices of Convex Polyhedral Sets. J. Soc. Indust. Appl. Math. 9, 72-88 (1961). DOI 10.1137/0109008 | MR 0142057 | Zbl 0108.33203
[2] K. B. Haley: The Solid Transportation Problem. Opns. Res. 10, 448 - 463 (1962). DOI 10.1287/opre.10.4.448 | Zbl 0109.13904
[3] K. B. Haley: The Multi-Index Problem. Opns. Res. 11, 368 - 379 (1963). DOI 10.1287/opre.11.3.368 | Zbl 0121.14604
[4] K. B. Haley: The Existence of a Solution to the Multi-Index Problem. Opnal Res. Quat. 16, 471-474 (1965).
[5] K. B. Haley: Note on the Letter by Morávek and Vlach. Opns. Res. 15, 545-546 (1967). DOI 10.1287/opre.15.3.545
[6] J. Morávek, M. Vlach: On the Necessary Conditions for the Existence of a Solution to the Multi-index Problem. Opns. Res. 15, 542-545 (1967). DOI 10.1287/opre.15.3.542
[7] J. Morávek, M. Vlach: On Necessary Conditions for a Class of Systems of Linear Inequalities. Aplikace matematiky 13, 299-303 (1968). MR 0240119
[8] G. Smith: The Construction by Computer of a University Departmental Timetable. M. Eng. Sc. Thesis, The University of New South Wales, 1968.
[9] G. Smith: Further Necessary Conditions for the Existence of a Solution to the Multi-Index Problem. Opns. Res. 21, 380-386 (1973). DOI 10.1287/opre.21.1.380 | MR 0373592 | Zbl 0259.90021
[10] S. Vajda: Mathematical Programming. p 42. Addison-Wesley (1961). MR 0135621 | Zbl 0102.36401
[11] M. Vlach: Branch and Bound Method for Three-Index Assignment Problem. Ekonomicko-matematický obzor 3, 181 - 191 (1967). MR 0215609
Partner of
EuDML logo