Previous |  Up |  Next

Article

Summary:
Let $F_{123}$ be a real functional of three real variables $t_1,t_2$ and $t_3$. We give a method of constructing the contact tangential chart of $F_{123}=0$ by the enveloping method. Given the parametric equations of $(t_1)$-and $(t_2)$-curves, we can obtain the parametric equation of $(t_3)$-curves, by classical differential-geometric method. Some examples are also given. A special case of the general contact tangential charts, consisting of one curvilinear scale and two families of envelopes is also studied. Finally, contact tangential charts of four variables or more are researched.
References:
[1] Otto E.: Nomography. (English translation by J. Smólska), (Intn'l Series of Monographs on Pure and Appl. Math., Vol. 42), Pergamon Press, Oxford, 1963, p. 169-174. MR 0158570 | Zbl 0108.13104
[2] Йокл E.: Составные номограммы с ориентированным транспарантом и из выравненных точек, в которых используются контакты касания. Номографический сборник №. 4. M., ВЦ АН СССР, 1967, стр. 135-146. Zbl 1103.35360
[3] Záhora J.: Nomogrammes adjoints aux nomogrammes à lignes concourantes et aux nomogrammes à contact tangentiel ayant au moins un système d'isoplèthes courbes. (en tchèque). Apl. mat. 14 (1969), 195-209. MR 0242401 | Zbl 0176.16404
[4] Adams D. P.: Nomography - Theory and Application. Archon Books, Hamden, Connecticut, 1964, p. 113-133.
Partner of
EuDML logo