Article
Summary:
Generalized logarithmic interactions are introduced and investigated in this paper. The theory is based on methods for multiple comparisons. A numerical example is given. A method based on logarithmic interactions is proposed for comparing several $2\times 2$ contingency tables.
References:
[1] Bartlett M. S. (1935):
Contingency table interactions. J. Roy. Stat. Soc. Supp. 2, 248-252.
DOI 10.2307/2983639
[2] Edwards A. W. F. (1963): The measure of association in a 2 $\times$ 2 table. J. Roy. Stat. Soc. ser. A 126, 109-114.
[5] Goodman L. A. (1964):
Simultaneous confidence limits for cross-product ratios in contingency tables. J. Roy. Stat. Soc. ser. B 26, 86-102.
MR 0175264
[6] Kullback S. (1959):
Information theory and statistics. Wiley, New York.
MR 0103557
[8] Rao C. R. (1965):
Linear statistical inference and its applications. Wiley, New York.
MR 0221616
[9] Scheffé H. (1959):
The analysis of variance. Wiley, New York.
MR 0116429
[10] Šidák Z. (1967):
Rectangular confidence regions for the means of multivariate normal distributions. J. Amer. Stat. Assoc. 62, 626-633.
MR 0216666
[11] Wilks S. S. (1962):
Mathematical statistics. Wiley, New York.
MR 0144404