Previous |  Up |  Next

Article

Summary:
Generalized logarithmic interactions are introduced and investigated in this paper. The theory is based on methods for multiple comparisons. A numerical example is given. A method based on logarithmic interactions is proposed for comparing several $2\times 2$ contingency tables.
References:
[1] Bartlett M. S. (1935): Contingency table interactions. J. Roy. Stat. Soc. Supp. 2, 248-252. DOI 10.2307/2983639
[2] Edwards A. W. F. (1963): The measure of association in a 2 $\times$ 2 table. J. Roy. Stat. Soc. ser. A 126, 109-114.
[3] Fisher R. A. (1962): Confidence limits for a cross-product ratio. Austral. J. Statist. 4, 41. DOI 10.1111/j.1467-842X.1962.tb00285.x
[4] Goodman L. A. (1963): On methods for comparing contingency tables. J. Roy. Stat. Soc. ser. A 126, 94-108. DOI 10.2307/2982447 | MR 0153080
[5] Goodman L. A. (1964): Simultaneous confidence limits for cross-product ratios in contingency tables. J. Roy. Stat. Soc. ser. B 26, 86-102. MR 0175264
[6] Kullback S. (1959): Information theory and statistics. Wiley, New York. MR 0103557
[7] Lindley D. V. (1964): The Bayesian analysis of contingency tables. Ann. Math. Statist. 35, 1622-1643. DOI 10.1214/aoms/1177700386 | MR 0166885
[8] Rao C. R. (1965): Linear statistical inference and its applications. Wiley, New York. MR 0221616
[9] Scheffé H. (1959): The analysis of variance. Wiley, New York. MR 0116429
[10] Šidák Z. (1967): Rectangular confidence regions for the means of multivariate normal distributions. J. Amer. Stat. Assoc. 62, 626-633. MR 0216666
[11] Wilks S. S. (1962): Mathematical statistics. Wiley, New York. MR 0144404
Partner of
EuDML logo