Previous |  Up |  Next

Article

Summary:
The paper presents the proofs of two theorems of uniqueness of the solution of the mixed boundary-initial value problem for elastic Cosserat continuum. The first of the theorems deals with an anisotropic material and is deduced for bounded regions. Except for certain symmetry no restrictive assumptions are imposed on the anisotropy tensors. The second theorem concerns an isotropic material and is formulated for a certain class of unbounded regions. In addition to the inequalities that are necessary and sufficient for positive definitness of the strain energy density, two other restrictive inequalities must be assumed for the material constants.
References:
[1] Knops R. J., Payne L. E.: Uniqueness in classical elastodynamics. Arch. Ratl. Mech. Anal., 27 (1968), 5, 349-355. DOI 10.1007/BF00251437 | MR 0219261
[2] Wheeler L. T., Sternberg E.: Some theorems in classical elastodynamics. Arch. Ratl. Mech. Anal., 31 (1968), 1, 51 - 90. DOI 10.1007/BF00251514 | MR 1553519 | Zbl 0187.47003
[3] Eringen A. C.: Linear theory of micropolar elasticity. Journ. Math. Mech., 15 (1966), 6, 909-923. MR 0198744 | Zbl 0145.21302
[4] Аэро Э. Л., Кувшинский Е. В.: Континуальная теория асимметрической упругости. Физ. TB. тела, 6 (1964), 9, 2689-2699. Zbl 1117.65300
[5] Neuber H.: On the general solution of linear-elastic problems in isotropic and anisotropic Cosserat continua. Appl. Mech., Proc. 11-th intern, congress of appl. mech., Munich 1964.
[6] Mindlin R. D., Tiersten F. F.: Effects of couple-stresses in linear elasticity. Arch. Ratl. Mech. Anal., 11 (1962), 415-448. DOI 10.1007/BF00253946 | MR 0144513
[7] Mindlin R. D., Eshel N. N.: On the first strain gradient theories in linear elasticity. Int. Journ. Solids and Struct., 4 (1968), 1, 75-95. DOI 10.1016/0020-7683(68)90036-X
[8] Edelstein W. S.: A uniqueness theorem in the linear theory of elasticity. Acta Mech., 8 (1969), 183-187. DOI 10.1007/BF01182259 | MR 0272240 | Zbl 0194.28403
[9] Mindlin R. D.: Microstructure in linear elasticity. Arch. Ratl. Mech. Anal., 16 (1964), 51-78. DOI 10.1007/BF00248490 | MR 0160356
[10] Hlaváček M., Kopáčková M.: Theorems of the linear elastostatic Cosserat continuum for exterior domains. Zeit. f. angew. Math. Mech., 50 (1970), 5, 295-302. DOI 10.1002/zamm.19700500504 | MR 0267820
[11] Hlaváček I., Hlaváček M.: On the existence and uniqueness of solution and some variational principles in linear theories of elasticity with couple-stresses. I - Cosserat continuum, II - Mindlin's elasticity with microstructure and the first strain-gradient theory, Aplikace matematiky 14 (1969), 5, 387-410, 411-426. MR 0250537
[12] Gurtin M. E., Sternberg E.: Theorems in linear elastostatics for exterior domains. Arch. Ratl. Mech. Anal., 8 (1961), 99-119. DOI 10.1007/BF00277433 | MR 0133972 | Zbl 0101.17001
[13] Zaremba S.: Sopra un teorema d'unicitá relative alla equazione delle onde sferiche. Atti della Reale Accad. dei Lincei, ser. 5, 24 (1915), 904.
[14] Kellogg O. D.: Foundations of potential theory. Berlin, Springer, 1929. MR 0222317
Partner of
EuDML logo