Previous |  Up |  Next

Article

Summary:
By using Schwarz-Christoffel theorem the author deduces the conformal mapping of a halfplane onto an infinitely long strip whose one boundary id a straight line while the other one is a polygonal line consisting of two half lines parallel to the first boundary and connected by a segment whose slope angle is a fractional multiple of $\pi$. This mapping is expressed by means of elementary functions distinguishing the cases when $\pi$ is divided by odd or even integer; some important properties of this mapping are shown.
References:
[1] Handbuch der Physik. (herausgeben von S. Flügge), Bd XVI, Springer-Verlag 1958, s. 76. MR 0106010 | Zbl 0103.16403
[2] Mieczik J.: Rozklad pola tellurycznego nad uskokiem. Acta Geoph. Polon. 13, 1965, 257.
[3] Gibbs W. J.: Conformal Transformations in Electrical Engineering. London 1958. Zbl 0084.07006
[4] Binns K. J., Lawrenson P. J.: Analysis and Computation of Electric and Magnetic Field Problems. Pergamon Press 1963. Zbl 0119.42901
[5] Филъчаков П. Ф.: Приближенные методы конформных отображений. Киев 1964, стр. 235. Zbl 1117.65300
[6] Градштейн И. С., Рыжик И. M.: Таблицы интегралов сумм рядов и произведений. Москва 1963, стр. 79. Zbl 1145.93303
[7] Говорков В. А.: Электрические и магнитные поля. Москва 1960, стр. 243. Zbl 1004.90500
Partner of
EuDML logo