Previous |  Up |  Next

Article

Keywords:
numerical analysis
References:
[1] W. Givens: Numerical computation of the characteristic values of a real symmetric matrix. Oak Ridge National Laboratory, ORNL - 1574 (1954). MR 0063771 | Zbl 0055.35005
[2] J. H. Wilkinson: Calculation of the eigenvalues of a symmetric tridiagonal matrix by the method of bisection. Numer. Math. 4, 362-367 (1962). DOI 10.1007/BF01386333 | MR 0148208 | Zbl 0107.34306
[3] F. L. Bauer: Das Verfahren der Treppeniteration und verwandte Verfahren zur Lösung algebraischer Eigenwertprobleme. Z. Angew. Math. Phys. 8, 214-235 (1957). MR 0088049 | Zbl 0078.12103
[4] H. Rutishauser F. L. Bauer: Détermination des vecteurs propres d'une matrice par une méthode iterative avec convergence quadratique. Comptes Rendus 240, 1680 (1955). MR 0070269
[5] F. L. Bauer: Das Verfahren der abgekürzten Iteration. Z. Angew. Math. Phys. 7, 17 - 32 (1956). MR 0079835 | Zbl 0072.14101
[6] F. L. Bauer C. T. Fike: Norms and exclusions theorems. Numer. Math. 2, 137-141 (1960). DOI 10.1007/BF01386217 | MR 0118729
[7] W. Prager W. Oettli: Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand side. Erscheint in Numer. Math. MR 0168106
[8] J. H. Wilkinson: Rounding errors in algebraic processes. Her Majesty's Stationary Office, London 1963. MR 0161456 | Zbl 1041.65502
[9] F. L. Bauer A. S. Householder: Moments and characteristic roots. Numer. Math. 2, 42-53 (1960). DOI 10.1007/BF01386207 | MR 0110188
[10] E. Schröder: Über unendlich viele Algorithmen zur Auflösung der Gleichungen. Math. Ann. 2, 317-365 (1870). DOI 10.1007/BF01444024 | MR 1509664
[11] H. Rutishauser: Report on the solution of eigenvalue problems with the LR-transformation. Nat. Bureau Standards Appl. Math. Ser. 49, 47-81 (1958). MR 0090118
[12] J. G. F. Francis: The QR-transformation. A unitary analogue to the LR-transformation. Comput. J. 4, 265-271 (1961, 1962). DOI 10.1093/comjnl/4.3.265 | MR 0130111 | Zbl 0104.34304
Partner of
EuDML logo