Previous |  Up |  Next

Article

Title: Anisotropic function spaces: Hardy's inequality and traces on surfaces (English)
Author: Malarski, Mircea
Author: Triebel, Hans
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 41
Issue: 3
Year: 1991
Pages: 518-537
.
Category: math
.
MSC: 46E35
idZBL: Zbl 0767.46031
idMR: MR1117805
DOI: 10.21136/CMJ.1991.102486
.
Date available: 2008-06-09T15:41:22Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102486
.
Reference: [BIN] Besov O. V., Iľin I. P., Nikoľskij S. M.: Integral representations of functions and embedding theorems.(Russian). Moscow: Nauka 1975 [English edition: Scripta Series in Mathematics, Washington: Halsted Press; New York-Toronto-London: V. H. Winston & Sons 1978/1979]. MR 0430771
Reference: [N] Nikoľskij S. M.: Approximation of functions of several variables and embedding theorems. Second edition.(Russian). Moscow: Nauka 1977 [English translation of the first edition: Berlin-Heidelberg-New York: Springer-Verlag 1975]. MR 0374877
Reference: [ST] Schmeisser H.-J., Triebel H.: Topics in Fourier analysis nad function spaces.Leipzig: Akad. Verlagsgesellschaft Geest & Portig 1987 and Chichester: Wiley 1987.
Reference: [TO] Triebel H.: Interpolation Theory, Function spaces, Differential Operators.North-Holland Publ. Comp., Amsterdam-New York-Oxford: 1978. Zbl 0387.46033, MR 0503903
Reference: [T1] Triebel H.: Anisotropic function spaces I, II.Anal. Math. 10 (1984), 53-77, 79-96. 10.1007/BF02115872
Reference: [T2] Triebel H.: A priori estimates and boundary value problems for semi-elliptic differential equations: A model case.Comm. Partial Differential Equations 8 (1983), 1621-1664. Zbl 0548.35052, MR 0729196, 10.1080/03605308308820318
Reference: [U1] Uspenskij S. V.: On embedding theorems for functions in domains I.(Russian), Sibirsk. Math. Ž. 7 (1966), 650-663.
Reference: [U2] Uspenskij S. V.: On traces of functions of the Sobolev class $W\sb{p}\sp{1\sb{1}\ldots 1\sb{n}}$ on smooth surfaces.(Russian). Sibirsk. Math. Ž. 13 (1972), 429-451. MR 0312252
Reference: [UDP] Uspenskij S. V., Demidenko G. V., Perepelkin V. G.: Embedding theorems and applications to differential equations.(Russian). Novosibirsk: Nauka, 1984.
.

Files

Files Size Format View
CzechMathJ_41-1991-3_16.pdf 2.769Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo