[1] V. I. Bogačev, S. A. Škarin:
On differentiable and Lipschitz mappings between Banach spaces. (in Russian), Matem. Zametki 44 (1988), 567-583.
MR 0980578
[2] J. M. Borwein, D. Preiss:
A smooth variational principle with applications to sub-differentiability and to differentiability of convex functions. Trans. Amer. Math. Soc. 303 (1987), 517-527.
DOI 10.1090/S0002-9947-1987-0902782-7 |
MR 0902782
[3] N. Bourbaki: Eléments de Mathématique, Variétés différentielles et analytiques. Paris 1967, 1971.
[4] H. Cartan:
Calcul différentiel, Formes différentielles. Paris 1967.
MR 0223194
[5] M. Fabian, N. V. Zhivkov:
A characterization of Asplund spaces with the help of local $\epsilon$-supports of Ekeland and Lebourg. C. R. Acad. Bulgare Sci. 38 (1985), 671 - 674.
MR 0805439 |
Zbl 0577.46012
[8] P. S. Kenderov:
Monotone operations in Asplund spaces. C. R. Acad. Bulgare Sci. 30 (1977), 963-964.
MR 0463981
[11] R. R. Phelps:
Convex functions, monotone operators and differentiability. Lect. Notes in Math. 1364, Springer-Verlag, 1989.
MR 0984602 |
Zbl 0658.46035
[12] D. Preiss:
Gateaux differentiable functions are somewhere Frechet differentiable. Rend. Circ. Mat. di Palermo, Ser. II, 33 (1984), 122-133.
MR 0743214 |
Zbl 0573.46024
[13] R. T. Rockafellar:
The theory of subgradients and its applications to problems of optimization. Heldermann, Berlin, 1981.
MR 0623763 |
Zbl 0462.90052
[14] L. Veselý, L. Zajíček:
Delta-convex mappings between Banach spaces and applications. Dissertationes Mathematicae 289, Warszawa 1989, 48 pp.
MR 1016045
[15] L. Zajíček:
A generalization of an Ekeland-Lebourg theorem and the differentiability of distance functions. Proc. 11th Winter School, Suppl. Rend. Circ. Mat. di Palermo, Ser. II, nr. 3 (1984), 403-410.
MR 0744405
[16] L. Zajíček:
Strict differentiability via differentiability. Acta Univ. Carolinae 28 (1987), 157-159.
MR 0932752