Previous |  Up |  Next

Article

References:
[1] M. E. Adams, R. Beazer: Congruence properties cf distributive double $p$-algebras. Czechoslovak Math. J. (to appear).
[2] R. Beazer: The determination congruence on double $p$-algebras. Algebra Universalis 6 (1976), 121-129. DOI 10.1007/BF02485824 | MR 0419319 | Zbl 0353.06002
[3] R. Beazer: Pseudocomplemented algebras with Boolean congruence lattices. J. Australian Math. Soc. (A) 26 (1978), 163-168. DOI 10.1017/S1446788700011654 | MR 0551487 | Zbl 0389.06004
[4] R. Beazer: Regular double $p$-algebras with Stone congruence lattices. Algebra Universalis 9 (1979), 238-243. DOI 10.1007/BF02488035 | MR 0523938 | Zbl 0414.06010
[5] R. Beazer: On congruence lattices of some $p$-algebras and double $p$-algebras. Algebra Universalis 13 (1981), 379-388. DOI 10.1007/BF02483848 | MR 0631730 | Zbl 0475.06003
[6] R. Beazer: Lattices whose ideal lattice is Stone. Proc. Edin. Math. Soc. 26 (1983), 107-112. DOI 10.1017/S0013091500028121 | MR 0695648
[7] G. Grätzer: General Lattice Theory. Birkhäuser Verlag, Basel and Stuttgart, 1978. MR 0504338
[8] T. Katriňák: The structure of distributive double $p$-algebras. Regularity and congruences. Algebra Universalis 3 (1973), 238-246. DOI 10.1007/BF02945123 | MR 0332598
[9] T. Katriňák, S. El-Assar: $p$-algebras with Stone congruence lattices. Acta. Sci. Math. 51 (1987), 371-386. MR 0940942
[10] H. P. Sankappanavar: On pseudocomplemented semilattices with Stone congruence lattices. Math. Slovaca 29 (1979), 381-395. MR 0562008 | Zbl 0416.06007
Partner of
EuDML logo