Previous |  Up |  Next

Article

References:
[1] Chueh K. N., Conley C. C., Smoller J. A.: Positively invariant regions for systems of nonlinear diffusion equations. Indiana Univ. Math. J. 26, 373-392 (1977). DOI 10.1512/iumj.1977.26.26029 | MR 0430536 | Zbl 0368.35040
[2] Dafermos C. M.: Estimates for conservation laws with little viscosity. SIAM J. Math. Anal. 18, 409-421 (1987). DOI 10.1137/0518031 | MR 0876280 | Zbl 0655.35055
[3] DiPerna R. J.: Convergence of approximate solutions to conservation laws. Arch. Rational. Mech. Anal. 82, 27-70 (1983). DOI 10.1007/BF00251724 | MR 0684413 | Zbl 0519.35054
[4] Feireisl E.: Compensated compactness and time-periodic solutions to non-autonomous quasilinear telegraph equations. Apl.Mat.55(3), 192-208(1990). MR 1052740 | Zbl 0737.35040
[5] Feireisl E.: Weakly damped quasilinear wave equation: Existence of time-periodic solutions. to appear in Nonlinear Anal. T.M.A. MR 1131015 | Zbl 0757.35044
[6] Rascle M.: Un résultat de „compacité par compensation à coefficients variables. Application à l'élasticité non linéaire. C. R. Acad. Sc. Paris 302 Sér. I 8, 311-314 (1986). MR 0838582 | Zbl 0606.35054
[7] Serre D.: La compacité par compensation pour les systèmes hyperboliques non linéaires de deux équations a une dimension d'espace. J. Math. Pures et Appl. 65, 423-468 (1986). MR 0881690
Partner of
EuDML logo