[1] F. L. Bauer E. Deutsch J. Stoer:
Abschätzungen für die Eigenwerte positiver linearen Operatoren. Linear Algebra and Applicns. 2 (1969), 275-301.
MR 0245587
[2] G. Birkhoff:
Lattice Theory. Amer. Math. Soc. Colloq. Publicns., vol. XXV, Providence, R. I.-3rd edition (1967).
MR 0227053 |
Zbl 0153.02501
[3] R. L. Dobrushin:
Central limit theorem for non-stationary Markov chains I, II. Theory Prob. Appl. 1 (1956), 63-80, 329-383 (English translation).
MR 0086436 |
Zbl 0093.15001
[4] J. Hajnal:
Weak ergodicity in non-homogeneous Markov chains. Proc. Camb. Phil. Soc. 54(1958),233-246.
MR 0096306 |
Zbl 0082.34501
[5] R. A. Hom, Ch. A. Johnson:
Matrix Analysis. Cambridge University Press, Cambridge, London, New York, New Rochelle, Melbourne and Sydney (1985).
MR 0832183
[6] S. Karlin:
A First Course in Stochastic Processes. Academic Press, New York and London (1968).
MR 0208657 |
Zbl 0177.21102
[7] D. G. Kendall:
Geometric ergodicity and the theory of queues. In: Matehmatical Methods in the Social Sciences, K. J. Arrow, S. Karlin, P. Suppes (eds.), Stanford, California (1960).
MR 0124088
[8] P. Kratochvíl A. Lešanovský:
A contractive property in finite state Markov chains. Czechoslovak Math. J. 35 (110) (1985), 491-509.
MR 0803042
[12] Т. А. Сарымсаков:
Основы теории процессов Маркова. Государственное издательство технико-теоретической литературы, Москва (1954).
Zbl 0995.90535
[13] Т. А. Сарымсаков:
К теории нзоднородных цепей Маркова. Докл. АН УзССР 8 (1956), 3-7.
Zbl 0995.90522
[16] E. Seneta:
Non-negative Matrices and Markov Chains. Springer-Verlag, New York, Heidelberg and Berlin (1981).
MR 2209438 |
Zbl 0471.60001