[2] G. Bourdaud: Sur les opérateurs peudo-différentiels à coefficients peu réguliers. Diss. Univ. de Paris-Sud, 1983.
[3] B. E. J. Dahlberg:
A note on Sobolev spaces. Proc. Symp. Pure Math. 35, 1979, part I, 183-185.
MR 0545257 |
Zbl 0421.46027
[4] D. E. Edmunds, H. Triebel:
Remarks on nonlinear elliptic equations of the type $\Delta u + u = |u|^p + f$ bounded domains. J. London Math. Soc. (2) 31 (1985), 331-339.
MR 0809954
[9] J. Marschall: Pseudo-differential operators with nonregular symbols. Thesis, FU Berlin (West), 1985.
[10] Y. Meyer:
Remarques sur un théorème de J. M. Bony. Suppl. Rendiconti Circ. Mat. Palermo Serie II, 1 (1981), 1-20.
MR 0639462 |
Zbl 0473.35021
[11] S. Mizohata:
Lectures on the Cauchy problem. Tata Institute, Bombay 1965.
MR 0219881
[12] J. Peetre:
Interpolation of Lipschitz operators and metric spaces. Matematica (Cluj) 12 (35) (1970), 325-334.
MR 0482280 |
Zbl 0217.44504
[14] J. Rauch:
An $L^2$-proof that $H^s$ is invariant under nonlinear maps for $s > \frac{n}{2}$. In: Global Analysis, Analysis on Manifolds, Teubner-Texte Math., 57, Teubner, Leipzig 1983.
MR 0730621
[16] Th. Runst:
Mapping properties of non-linear operators in spaces of Triebel-Lizorkin and Besov type. Anal. Math. 12 (1986), 313-346.
DOI 10.1007/BF01909369 |
MR 0877164
[17] W. Sickel:
On pointwise multipliers in Besov-Triebel-Lizorkin spaces. Seminar Analysis 1986 (ed. by B.-W. Schulze and H. Triebel), Teubner-Texte Math., 96, Teubner, Leipzig 1987.
MR 0932288
[18] W. Sickel:
Superposition offunctions in spaces of Besov-Triebel-Lizorkin type. The critical case $1 < s < \frac{n}{p}$. Seminar Analysis 1987 (ed. by B.-W. Schulze and H. Triebel), Teubner-Texte Math. 106, Teubner, Leipzig, 1988.
MR 1066752
[19] G. Stampacchia:
Equations elliptiques du second ordre à coefficients discontinues. Univ. Montreal Press, Quebec, 1966.
MR 0251373
[20] E. M. Stein:
Singular integrals and differentiability properties of functions. Princeton Univ. Press, Princeton 1979.
MR 0290095
[21] H. Triebel:
Theory of function spaces. Akad. Verlagsges. Geest and Portig K. G., Leipzig and Birkhäuser Verlag, Basel, Boston, Stuttgart 1983.
MR 0781540 |
Zbl 0546.46028
[22] H. Triebel:
Mapping properties of non-linear operators generated by holomorphic $\Phi(u)$ in function spaces of Besov-Sobolev-Hardy type. Boundary value problems for elliptic differential equations of type $\Delta u = f(x) + \Phi(u)$. Math. Nachr. 117 (1984), 193-213.
DOI 10.1002/mana.3211170115 |
MR 0755303
[23] M. Yamazaki:
A quasi-homogeneous version of paradifferential operators I. Boundedness on spaces of Besov type. J. Fac. Sci. Univ. Tokyo, IA33 (1986), 131-174.
MR 0837335 |
Zbl 0608.47058
[24] M. Yamazaki:
A quasi-homogeneous version of the microlocal analysis for nonlinear partial differential equations. Preprint.
MR 0977891 |
Zbl 0701.35162