[1] Bartík v.:
General bridge-mapping theorem. Comment. Math. Univ. Carolinae 16, 4 (1975), 693-698 (Russian).
MR 0391092
[2] Bartík V.:
On the bijectivity of the canonical transformation $[\beta X;Y]\rightarrow [X;Y]$. Quart. J. Math. Oxford (2), 29 (1978), 77-91.
DOI 10.1093/qmath/29.1.77 |
MR 0493853
[3] Bartík V.: On the bijectivity of the canonical transformation $[\beta\sb{G} X;Y]\sb{G} \rightarrow [X;Y]\sb{G}$. Abstracts of 4th International Conference ,,Topology and its Applications", Dubrovnik, Sept. 30-Oct. 5 1985, Zagreb 1985.
[4] Borel A.:
Seminar on transformation groups. Annals of Math. Studies 46, Princeton University Press, 1960.
MR 0116341 |
Zbl 0091.37202
[9] Markl M.:
On the $G$-spaces having an ${\cal S}-G-{\rm CW}$-approximation by a $G-{\rm CW}$-complex of finite $G$-type. Comment. Math. Univ. Carolinae 24, 3 (1983).
MR 0730149
[10] Matumoto T.:
Equivariant $K$-theory and Fredholm operators. J. Fac. Sci. Univ. Tokyo, Sect. IA, 18(1971), 109-112.
MR 0290354 |
Zbl 0213.25402
[11] Matumoto T.:
On $G$-${\rm CW}$-complexes and a theorem of J.H.C. Whitehead. J. Fac. Sci. Univ. Tokyo, Sect. I, 18 (1971), 363-74.
MR 0345103
[12] May J. P.: The homotopical foundations of algebraic topology. Mimeographed notes, University of Chicago.
[13] Milnor J.:
On space having the homotopy type of a $CW$-complex. Trans. Amer. Math. Soc. 90 (1959), 272-280.
MR 0100267
[15] Murayama M.:
On $G$-$ANR$'s and their $G$-homotopy types. Osaka J. Math. 20 (1983), 479-512.
MR 0718960 |
Zbl 0531.57034
[16] Palais R. S.:
The classification of $G$-spaces. Memoirs of the Amer. Math. Soc., Number 36 (1960).
MR 0177401 |
Zbl 0119.38403
[18] Waner S.:
Equivariant homotopy theory and Milnor's theorem. Trans. Amer. Math. Soc. 258(1980), 351-368.
MR 0558178 |
Zbl 0444.55010