Previous |  Up |  Next

Article

References:
[1] P. Avery: The condition for a tournament score sequence to be simple. J. Graph Theory 4 (1980), 157-164. DOI 10.1002/jgt.3190040204 | MR 0570350
[2] L. W. Beineke: A tour through tournaments or bipartite and ordinary tournaments: A comparative survey. Combinatorics, London Mathematical Society Lecture Note Series 52, Cambridge University Press (1981), pp. 41 - 55. MR 0633648
[3] L. W. Beineke, J. W. Moon: On bipartite tournaments and scores. in The Theory and Applications of Graphs (ed. G. Chartrand et al), Wiley (1981), pp. 55 - 71. MR 0634516 | Zbl 0473.05031
[4] D. Gale: A theorem of flows in networks. Pacific J. Math. 7 (1957), 1073-1082. DOI 10.2140/pjm.1957.7.1073 | MR 0091855
[5] M. Koren: Pairs on sequences with a unique realization by bipartite graphs. J. Combin. Theory 21 (1976), 224-234. DOI 10.1016/S0095-8956(76)80006-8 | MR 0444525
[6] J. W. Moon: On the score sequence of an n-partite tournament. Canadian Math. Bulletin 5 (1962), 51-58. DOI 10.4153/CMB-1962-008-9 | MR 0133246
[7] H. J. Ryser: Combinatorial Mathematics. Cams Mathematical Monographs No. 14, MAA, Washington, 1963. MR 0150048 | Zbl 0112.24806
Partner of
EuDML logo