Previous |  Up |  Next

Article

References:
[1] M. Anderson: Classes of lattice-ordered semigroups describable in terms of chains. to appear.
[2] M. Anderson, C. С. Edwards: Lattice properties of the symmetric weakly inverse semigroup on a totally ordered set. J. Austral. Math. Soc. 23 (1981), 395-404. MR 0638267 | Zbl 0488.06010
[3] M. Anderson, C. C. Edwards: A representation theorem for distributive 1-monoids. Canad. Math. Bull., 27 (1984), 238-240. DOI 10.4153/CMB-1984-034-6 | MR 0740420
[4] A. Bigard K. Keimel, S. Wolfenstein: Groups et Anneaux Reticules. Springer-Verlag, Berlin, 1977. MR 0552653
[5] A. H. Clifford, G. B. Preston: The Algebraic Theory of Semigroups. Volume II, AMS, Providence, 1967. MR 0218472 | Zbl 0178.01203
[6] P. Conrad: Archimedean extensions of lattice-ordered groups. J. Indian Math. Soc. 30 (1966), 131-160. MR 0224519 | Zbl 0168.27702
[7] P. Conrad J. Harvey, C. Holland: The Hahn embedding theorem for lattice-ordered groups. Trans. A.M.S. 108 (1963), 143-169. DOI 10.1090/S0002-9947-1963-0151534-0 | MR 0151534
[8] L. Fuchs: Teilweise geordnete algebraische Strukturen. Akademiai Kiado, Budapest, 1966. MR 0204547 | Zbl 0154.00708
[9] H. Hahn: Über die nichtarchimedischen Grossensysteme. Sitz. ber. K. Akad. der Wiss., Math. Nat. Kl. IIa 116 (1907), 601-655.
[10] O. Holder: Die Axiome der Quantitat und die Lehre vom Mass. Ber. Verh. Sachs. Ges. Wiss. Leipzig, Math.-Phys. Cl. 53 (1901), 1-64.
[11] W. C. Holland: The lattice-ordered group of automorphisms of an ordered set. Michigan Math. J. 10 (1963), 399-408. DOI 10.1307/mmj/1028998976 | MR 0158009
[12] D. Khoun: Cardinal des groupes reticules. C. R. Acad. Sc. Paris 270 (1970) A1150-A1154.
[13] T. Merlier: Nildemi-groupes totalement ordonnes. Czech. Math. J. 24 (99) (1974), 403-410. MR 0347700 | Zbl 0321.06014
[14] T. Saito: Archimedean property in an ordered semigroup. J. Austral. Math. Soc. 8 (1968), 547-556. DOI 10.1017/S1446788700006200 | MR 0230661 | Zbl 0159.02803
[15] T. Saito: Archimedean classes in a nonnegatively ordered semigroup. J. Indian Math. Soc. 43 (1979), 79-104. MR 0682004 | Zbl 0528.06016
[16] T. Saito: Nonnegatively ordered semigroups in the strict sense and problems of Satyanarayana. I. Proc. 3rd Symposium on Semigroups (Inter-Univ. Sem. House of Kansai, Kobe, 1979), Osaka Univ., Osaka, 1980, 45-49. MR 0571699
Partner of
EuDML logo