[1] D. E. Blair P. Verheyen, L. Verstraelen: Hypersurfaces satisfaisant à $R. C= 0$ ou $С . R=0$. to appear.
[2] E. Cartan:
La déformation des hypersurfaces dans l'espace conformément réel à $n \neq 5$ dimensions. Bull. Soc. Math. France, 45 (1917), p. 57-121.
DOI 10.24033/bsmf.975 |
MR 1504762
[3] В. Y. Chen, L. Verstraelen:
A characterization of totally quasiumbilical submanifolds and its applications. Boll. Un. Mat. Ital. (5) 14-A (1977), 49-57.
MR 0478040 |
Zbl 0365.53007
[4] J. Deprez P. Verheyen, L. Verstraelen:
Intrinsic characterizations for complex hypercylinders and complex hyperspheres. Geom. Dedicata 16 (1984), 217-229.
MR 0758908
[6] y. Matsuyarna:
Complete hypersurfaces with $RS = 0$ in $E\sp{n+2}$. Proc. Amer. Math. Soc. 88 (1983), 119-123.
MR 0691290
[7] I. Mogi, H. Nakagawa:
On hypersurfaces with parallel Ricci tensor in a Riemannian manifold of constant curvature. in Differential Geometry, in honor of K. Yano, Kinokuniya, 1972,267-279.
MR 0326624 |
Zbl 0253.53018
[10] P. J. Ryan:
Hypersurfaces with parallel Ricci tensor. Osaka J. Math. 8 (1971), 251 - 259.
MR 0296859 |
Zbl 0222.53025
[12] Z. I. Szabó:
Structure theorems on Riemannian spaces satisfying $R(X, Y). R= 0$. I. The local version. J. Differential Geometry 17(1982) 531-582.
MR 0683165 |
Zbl 0508.53025
[13] S. Tanno:
Hypersurfaces satisfying a certain condition on the Ricci tensor. Tôhoku Math. J.21 (1969), 297-303.
MR 0261508 |
Zbl 0189.22403
[16] P. Verheyen, L. Verstraelen: A new intrinsic characterization of hyper cylinders in Euclidean spaces. to appear.