Previous |  Up |  Next

Article

References:
[1] W. Johnson: p-adic proofs of congruences for the Bernoulli numbers. J. Number Th. 7 (1975), 251-265. DOI 10.1016/0022-314X(75)90020-7 | MR 0376512 | Zbl 0308.10006
[2] O. Grün: Eine Kongruenz für Bernoullische Zahlen. Jahresber. d. Deutschen Math. Verein. 50 (1940), 111-112. MR 0002332
[3] S. Lang: Cyclotomic Fields. Springer-Verlag, New York 1978. MR 0485768 | Zbl 0395.12005
[4] J. Uspenski, M. Heaslet: Elementary Number Theory. McGraw-Hill, New York 1939.
[5] J. Slavutskij: Generalized Voronoi's congurence and the number of classes of ideals of an imaginary quadratic field II. (Russian), Izv. Vyšš. Učebn. Zavedenij, Math. 4 (53) (1966), 118-126. MR 0213328
[6] H. S. Vandiver: Symmetric functions formed by systems of elements of a finite algebra and their connection with Fermat's quotient and Bernoulli numbers. Ann. Math. 18 (1917), 105-114. DOI 10.2307/2007115 | MR 1503591
[7] H. S. Vandiver: On Bernoulli numbers and Fermat's last theorem. Duke Math. J. 3 (1937), 569-584. DOI 10.1215/S0012-7094-37-00345-4 | MR 1546011
[8] G. F. Voronoi: On Bernoulli numbers. (Russian), Commen. Charkov Math. Soc. 2 (1890), 129-148; or in Collected Papers, Vol. I, Publ. House Of the Ukrainian Acad. Sci., Kiev 1952.
Partner of
EuDML logo