Previous |  Up |  Next

Article

References:
[1] Alo R. A., de Korvin A.: A one-sided Fubini theorem for Gowurin measures. J. Math. Anal Appl. 38 (1972), 387-398. DOI 10.1016/0022-247X(72)90097-2 | MR 0313472 | Zbl 0226.46046
[2] Bagby R., Swartz C.: Projective tensor product of $l\sp{p}$-valued measures. Mat. Čas. 25 (1975), 256-269. MR 0412377
[3] Bartle R. G.: A general bilinear vector integral. Studia Math. 15 (1956), 337-352. DOI 10.4064/sm-15-3-337-352 | MR 0080721 | Zbl 0070.28102
[4] Debieve C: Produit de mesures a valeurs vectorielles, Théorème de Fubini. Ann. Soc. Sci. Brux. T. 87, I (1973), 67-76. MR 0333112 | Zbl 0254.28015
[5] Dinculeanu N.: Integration on locally compact spaces. Noordhoff International Publishing, Leyden, 1974. MR 0360981
[6] Dobrakov I.: On integration in Banach spaces, I. Czech. Math. J. 20 (1970), 511 - 536. MR 0365138 | Zbl 0215.20103
[7] Dobrakov I.: On integration in Banach spaces, II. Czech. Math. J. 20 (1970), 680-695. MR 0365139 | Zbl 0224.46050
[8] Dobrakov I.: On representation of linear operators on $C\sb{0}(T, X)$. Czech. Math. J. 21 (1971), 13-30. MR 0276804 | Zbl 0225.47018
[9] Dobrakov I.: Products of operator valued measures and the Fubini theorem. Abstracts of the Fourth Prague Topological Symposium, 1976.
[10] Duchoň M., Kluvánek I.: Inductive tensor product of vector-valued measures. Mat. Čas. 17 (1967), 108-112. MR 0229786
[11] Duchoň M.: On the projective tensor product of vector-valued measures, I, II. Mat. Čas. 17 (1967), 113-120, 19 (1969), 228-234. MR 0229787
[12] Duchoň M.: On tensor product of vector measures in locally compact spaces. Mat. Čas. 19 (1969), 324-329. MR 0310182
[13] Duchoň M.: On vector measures in Cartesian products. Mat. Čas. 21 (1971), 241 - 247. MR 0310183
[14] Duchoň M.: A convolution algebra of vector-valued measures on compact abelian semigroup. Rev. Roumaine Math. Pures Appl. 16 (1971), 1467-1476. MR 0310184
[15] Duchoň M.: Fubini's theorem and convolution of vector-valued measures. Mat. Čas. 23 (1973), 170-178. MR 0335739
[16] Duchoň M.: Product of dominated vector measures. Math. Slovaca 27 (1977), 293-301. MR 0536147
[17] Dudley R., Pakula L.: A counter-example on the inner product of measures. Indiana Univ. Math. J. 21 (1972), 843-845. DOI 10.1512/iumj.1972.21.21067 | MR 0296245 | Zbl 0221.28003
[18] Dudley R. M.: A note on products of spectral measures. Vector and operator valued measures and applications. Academic Press, 1973, 125-126. MR 0336418
[19] Dunford N., Schwartz J.: Linear operators, part I. Interscience Publishers, New York 1958. MR 0117523
[20] Gould G. G.: Integration over vector-valued measures. Proc. London Math. Soc. (3) 15 (1965), 193-225. MR 0174694 | Zbl 0138.38403
[21] Halmos P. R.: Measure theory. D. Van Nostrand, New York 1950. MR 0033869 | Zbl 0040.16802
[22] Hille E., Phillips R.: Functional analysis and semigroups. Amer. Math. Soc. Coll. Publ., Providence 1957. MR 0089373 | Zbl 0078.10004
[23] Huneycutt J. E., Jr.: Products and convolutions of vector valued set functions. Studia Math. 41 (1972). DOI 10.4064/sm-41-2-119-129 | MR 0302855 | Zbl 0233.28013
[24] Kelley J. L., Srinivasan T. P.: On the Bochner integral. in Vector and operator valued measures and applications. Academic Press, Inc., New York 1973, 165-174. MR 0330408 | Zbl 0293.28010
[25] Kluvánek I.: An example concerning the projective tensor product of vector-valued measures. Mat. Čas. 20 (1970), 81-83. MR 0312263
[26] Maynard H. В.: A general Radon-Nikodym theorem. in Vector and operator valued measures and applications, Academic Press, Inc., New York 1973, 233 - 246. MR 0404578 | Zbl 0301.28006
[27] Millington H.: Products of group-valued measures. Studia Math. 54 (1975), 7-27. DOI 10.4064/sm-54-1-7-27 | MR 0404579 | Zbl 0325.28010
[28] Rao M. В.: Countable additivity of a set function induced by two vector-valued measures. Indiana Univ. Math. J. 21 (1972), 847-848. DOI 10.1512/iumj.1972.21.21068 | MR 0296246 | Zbl 0239.28002
[29] Swartz C.: The product of vector-valued measures. Bull. Australian Math. Soc. 8 (1973), 359-366. DOI 10.1017/S0004972700042659 | MR 0318441 | Zbl 0248.28009
[30] Swartz C.: A generalization of a theorem of Duchon on products of vector measures. J. Math. Anal. Appl. 51 (1975), 621-628. DOI 10.1016/0022-247X(75)90112-2 | MR 0374382 | Zbl 0312.28015
[31] Swartz C.: Products of vector measures by means of Fubini's theorem. Math. Slovaca 27(1977), 375-382. MR 0536840 | Zbl 0373.28004
[32] Thomas E.: L'intégration par rapport a une mesure de Radon vectorielle. Ann. Inst. Fourier, Grenoble, 20 (1970), 59~L89. DOI 10.5802/aif.352 | MR 0463396 | Zbl 0195.06101
[33] Thomas E.: Totally summable functions with values in locally convex spaces. Measure theory. Lecture Notes in Math. 541, Springer-Verlag, Berlin 1976, 117-131. MR 0450505 | Zbl 0357.46050
[34] White A. J.: Convolution of vector measures. Proc. Royal Soc. Edinburg, Ser. A 73 (1975), 117-135. MR 0417383 | Zbl 0331.43002
Partner of
EuDML logo