[2] R. C. Brown:
Duality theory for $n$-th order differential operators under Stieltjes boundary conditions. S.I.A.M. J. Math. Anal., to appear.
MR 0385224 |
Zbl 0316.47027
[3] R. С. Brown:
Duality theory for $n$-th order differential operators under Stieltjes boundary conditions, II: nonsmooth coefficients and nonsingular measures. Ann. Mat. Рurа. Appl., to appear.
MR 0422745 |
Zbl 0316.47027
[4] R. C. Brown:
Adjoint domains and generalized splines. Czech. Math. J. 25 (1975), 134-147.
MR 0397243 |
Zbl 0309.41014
[5] R. C. Brown: The operator theory of generalized boundary value problems. MRC Tech. Summ. Rept. #1446, June 1974.
[9] E. A. Coddington:
Self-adjoint problems for nondensely defined ordinary differential operators and their eigenfunction expansions. Advances in Math., to appear.
MR 0361927 |
Zbl 0307.47029
[10] E. A. Coddington, N. Levinson:
Theory of ordinary differential equations. McGraw Hill, New York, 1955.
MR 0069338 |
Zbl 0064.33002
[11] N. Dunford, J. T. Schwartz: Linear operators. Part 1. Interscience, New York, 1957.
[13] J. L. Kelley, I. Namioka:
Linear topological spaces. Van Nostrand, Princeton, New Jersey, 1963.
MR 0166578 |
Zbl 0115.09902
[16] A. M. Krall:
Stieltjes differential-boundary operators II. Pacific J. Math., to appear.
MR 0372316 |
Zbl 0283.34027
[17] A. M. Krall:
Stieltjes differential-boundary operators III.
Zbl 0294.34006
[18] A. M. Krall:
The development of general differential and general differential-boundary systems. Rocky Mt. J. Math., to appear.
MR 0409946 |
Zbl 0322.34009
[20] D. L. Rusell:
Control theory of hyperbolic equations related to certain questions in harmonic analysis and spectral theory. J. Math. Anal. Appl. 40 (1972), 336-368.
DOI 10.1016/0022-247X(72)90055-8 |
MR 0324228