Previous |  Up |  Next

Article

References:
[1] R. Arens: Operational calcuhis of linear relations. Pacific J. Math. 11 (1961), 9-23. DOI 10.2140/pjm.1961.11.9 | MR 0123188
[2] R. C. Brown: Duality theory for $n$-th order differential operators under Stieltjes boundary conditions. S.I.A.M. J. Math. Anal., to appear. MR 0385224 | Zbl 0316.47027
[3] R. С. Brown: Duality theory for $n$-th order differential operators under Stieltjes boundary conditions, II: nonsmooth coefficients and nonsingular measures. Ann. Mat. Рurа. Appl., to appear. MR 0422745 | Zbl 0316.47027
[4] R. C. Brown: Adjoint domains and generalized splines. Czech. Math. J. 25 (1975), 134-147. MR 0397243 | Zbl 0309.41014
[5] R. C. Brown: The operator theory of generalized boundary value problems. MRC Tech. Summ. Rept. #1446, June 1974.
[6] E. A. Coddington: Self-adjoint subspace extensions of nondensely symmetric operators. Bull. Amer. Math. Soc. 79 (1973), 712-716. DOI 10.1090/S0002-9904-1973-13275-6 | MR 0322568
[7] E. A. Coddington: Eigenfunction expansions for nondensely defined operators generated by symmetric ordinary differential expressions. Bull. Amer. Math. Soc. 79 (1973), 964-968. DOI 10.1090/S0002-9904-1973-13280-X | MR 0322592 | Zbl 0285.47021
[8] E. A. Coddington: Self-adjoint subspace extensions of nondensely defined symmetric operators. Advances in Math., 14 (1974), 309-332. DOI 10.1016/0001-8708(74)90034-6 | MR 0353032 | Zbl 0307.47028
[9] E. A. Coddington: Self-adjoint problems for nondensely defined ordinary differential operators and their eigenfunction expansions. Advances in Math., to appear. MR 0361927 | Zbl 0307.47029
[10] E. A. Coddington, N. Levinson: Theory of ordinary differential equations. McGraw Hill, New York, 1955. MR 0069338 | Zbl 0064.33002
[11] N. Dunford, J. T. Schwartz: Linear operators. Part 1. Interscience, New York, 1957.
[12] M. Hestenes: Calculus of variations and optimal control theory. Wiley, New York, 1966. MR 0203540 | Zbl 0173.35703
[13] J. L. Kelley, I. Namioka: Linear topological spaces. Van Nostrand, Princeton, New Jersey, 1963. MR 0166578 | Zbl 0115.09902
[14] A. M. Krall: Differential-boundary operators. Trans. Amer. Math. Soc., 154 (1971), 429-458. DOI 10.1090/S0002-9947-1971-0271445-4 | MR 0271445 | Zbl 0217.11802
[15] A. M. Krall: Stietltjes differential-boundary operators. Proc. Amer. Math. Soc., 41 (1973), 80-86. DOI 10.1090/S0002-9939-1973-0320415-3 | MR 0320415
[16] A. M. Krall: Stieltjes differential-boundary operators II. Pacific J. Math., to appear. MR 0372316 | Zbl 0283.34027
[17] A. M. Krall: Stieltjes differential-boundary operators III. Zbl 0294.34006
[18] A. M. Krall: The development of general differential and general differential-boundary systems. Rocky Mt. J. Math., to appear. MR 0409946 | Zbl 0322.34009
[19] E. J. McShane: Integration. Princeton U. Press, 1944. MR 0082536 | Zbl 0060.13010
[20] D. L. Rusell: Control theory of hyperbolic equations related to certain questions in harmonic analysis and spectral theory. J. Math. Anal. Appl. 40 (1972), 336-368. DOI 10.1016/0022-247X(72)90055-8 | MR 0324228
Partner of
EuDML logo