Previous |  Up |  Next

Article

References:
[1] G. Birkhoff: Lattice theory. 3rd edition. Amer. Math. Soc, Providence, R. I., 1967. MR 0227053 | Zbl 0153.02501
[2] A. H. Clifford, G. B. Preston: The algebraic theory of semigroups. Vol. I. Amer. Math. Soc., Providence, R. I., 1961. MR 0132791 | Zbl 0111.03403
[3] B. Pondělíček: Archimedean equivalence on ordered semigroups. Czechoslovak Math. J. 22 (97) (1972), 210-219. MR 0294200
[4] T. Saitô: Ordered idempotent semigroups. J. Math. Soc. Japan 14 (1962), 150-169. DOI 10.2969/jmsj/01420150 | MR 0144993
[5] T. Saitô: Regular elements in an ordered semigroup. Pacific J. Math. 13 (1963), 263 - 295. DOI 10.2140/pjm.1963.13.263 | MR 0152598
[6] T. Saitô: Note on the archimedean property in an ordered semigroup. Proc. Japan Acad. 46 (1970), 64-65. MR 0262135
[7] T. Saitô: Note on the archimedean property in an ordered semigroup. Bull. Tokyo Gakugei Univ. Ser. IV, 22 (1970), 8-12. MR 0268102
[8] T. Saitô: Elements of finite order in an ordered semigroup whose product is of infinite order. Proc. Japan Acad. 50 (1974), 268-270. MR 0360401
[9] T. Saitô: Archimedean classes in a nonnegatively ordered semigroup. to appear. MR 0682004
Partner of
EuDML logo