Previous |  Up |  Next

Article

References:
[1] D. Carlson, H. Schneider: Inertia theorems for matrices: The semidefinite case. J. Math. Anal. Appl. 6 (1963), 430-446. DOI 10.1016/0022-247X(63)90023-4 | MR 0148678 | Zbl 0192.13402
[2] Ch.-T. Chen: A generalisation of the inertia theorem. SIAM J. Appl. Math. 25 (1973), 158-161. DOI 10.1137/0125020 | MR 0335534
[3] R. D. Hill: Inertia theory for simultaneously triangulable complex matrices. Linear Algebra Appl. 2 (1969), 131-142. DOI 10.1016/0024-3795(69)90022-6 | MR 0245596 | Zbl 0186.33901
[4] A. Ostrowski, H. Schneider: Some theorems on the inertia of general matrices. J. Math. Anal. Appl. 4 (1962), 72-84. DOI 10.1016/0022-247X(62)90030-6 | MR 0142555 | Zbl 0112.01401
[5] R. A. Smith: Bounds for quadratic Lyapunov functions. J. Math. Anal. Appl. 12 (1965), 425-435. DOI 10.1016/0022-247X(65)90010-7 | MR 0190475 | Zbl 0135.29802
[6] R. A. Smith: Matrix calculations for Lyapunov quadratic forms. J. Diff. Equations 2 (1966), 208-217. DOI 10.1016/0022-0396(66)90044-1 | MR 0188557
[7J O. Taussky: A generalization of a theorem by Lyapunov. J. Soc. Ind. Appl. Math. 9 (1961), 640-643. MR 0133336
[8] O. Taussky: Matrices $C$ with $C\sp{n}\rightarrow 0$. J. Algebra / (1964), 5-10. DOI 10.1016/0024-3795(74)90060-3 | MR 0161865
[9] H. K. Wimmer: Inertia theorems for matrices, controllability and linear vibrations. Linear Algebra Appl. 8 (1974), 337-343. DOI 10.1016/0024-3795(74)90024-X | MR 0394388 | Zbl 0288.15015
[10] H. K. Wimmer: An inertia theorem for tridiagonal matrices and a criterion of Wall on continued fractions. Linear Algebra Appl. 9 (1974), 41 - 44. DOI 10.1137/1012005 | MR 0360632 | Zbl 0294.15009
[11] A. D. Ziebur: On determining the structure of A by analysing $e^At$. SIAM Review 12 (1970), 98-102. MR 0254074
Partner of
EuDML logo