Previous |  Up |  Next

Article

References:
[1] G. Alexander, C. Swartz: Linear operators on $c_X$. Czech. Math. Jour. 23, (1973) 231--234 MR 0315400 | Zbl 0262.47028
[2] J. Batt: Applications of the Orlicz-Pettis Theorem to operator-valued measures and compact and weakly compact linear transformations on the space of continuous functions. Rev. Roum. Math. Pure et Appl. 14 (1969), 907-935. MR 0388158 | Zbl 0189.43001
[3] J. Batt: On weak compactness in spaces of vector-valued measures and Bochner-integrable functions in connection with the Radon-Nikodym property of Banach spaces. Rev. Roum. Math. Pure of Appl, to appear. Zbl 0276.28013
[4] J. Batt, J. Berg: Linear bounded transformations on the space of continuous functions. J. Funct. Anal., 4 (1969), 215-239. DOI 10.1016/0022-1236(69)90012-3 | MR 0248546
[5] I. Dobrakov: A representation theorem for unconditionally converging linear operators on $С_0(T, X)$. Studia Math. 38 (1970), 460-461.
[6] I. Dobrakov: On representation of Hnear operators on $C_0(T, X)$. Czech. Math. Jour. 21 (1971), 13-30. MR 0276804
[7] N. Dimford, J. Schwartz: Linear operators. Interscience, 1958.
[8] J. Howard: ${\cal F}$-singular and ${\cal G}$-cosingular operators. Colloq. Math. 22 (1970), 85-89. DOI 10.4064/cm-22-1-85-89 | MR 0275194 | Zbl 0211.44704
[9] A. Pelczynski: Banach spaces on which every unconditionally converging operator is weakly compact. Bull. Acad. Pol. 10 (1962), 641-648. MR 0149295 | Zbl 0107.32504
[10] A. Pelczynski, Z. Semadeni: Spaces of continuous functions (III). Studia Math. 18 (1959), 211-222. DOI 10.4064/sm-18-2-211-222 | MR 0107806 | Zbl 0091.27803
[11] C. Swartz: Unconditionally converging operators on the space of continuous functions. Rev. Roum. Math. Pure et Appl, 17 (1972), 1695-1702. MR 0333815 | Zbl 0247.46047
[12] B. L. D. Thorp: Sequential-evaluation convergence. J. London Math. Soc. 44 (1969), 201-209. DOI 10.1112/jlms/s1-44.1.201 | MR 0236675 | Zbl 0174.17902
Partner of
EuDML logo