Previous |  Up |  Next

Article

References:
[1] J. T. Borrego, E. E. De Vun: Maximal semigroup orbits. to appear.
[2] J. T. Borrego: Compact actions. Froc. 2nd. Fl. Symp. on Automata and Semigroups, Part I (1971), University of Florida.
[3] N. Bourbaki: General Topology. Part I, Addison Wesley Publishing Company, 1966. Zbl 0301.54002
[4] J. M. Day: Semigroup acts, algebraic and topological. Proc. 2nd. Fl. Symp. on Automata and Semigroups, Part I (1971), University of Florida.
[5] J. M. Day, A. D. Wallace: Semigroups acting on continua. J. Austr. Math. Soc. VII (1967), 327-340. DOI 10.1017/S1446788700004171 | MR 0217212 | Zbl 0158.41703
[6] J. M. Day, A. D. Wallace: Multiplication induced in the state-space of an act. Math. Systems Theory I (1967), 305-314. MR 0222870 | Zbl 0153.34702
[7] С. F. Keleman: Transitive semigroup actions. Тг. Amer. Math. Soc. 146 (1969), 369-375. DOI 10.1090/S0002-9947-1969-0251708-X | MR 0251708
[8] Y. F. Lin: On input semigroups of automata. Math. Systems Theory, 4 (1970), 35 - 39. DOI 10.1007/BF01705883 | MR 0300804 | Zbl 0188.33201
[9] A. B. Paalman-de Miranda: Topological semigroups. Mathematisch Centrum, Amsterdam, 2nd Ed., 1970. Zbl 0242.22003
[10] K. Sikdar: Some remarks on semigroups actions and decompositions of the state space. Indian Statistical Institute Tech. Report. Math. Stat. (20) 71, 11 August, 1971. Read at the 37th Annual Conference of the Indian Math. Society.
[11] D. Stadlander: Semigroup actions and dimension. Acq. Math. 3 (1969), 1 - 14. MR 0251707
[12] D. Stadlander: Semigroup actions on topological spaces. Ph. D. Thesis, Penn. St. University 1966.
Partner of
EuDML logo