Previous |  Up |  Next

Article

References:
[1] Boas R. P., Jr.: The distance set of the Cantor set. Bull. Cal. Math. Soc., 54 (1962), p. 103. MR 0170820 | Zbl 0112.28602
[2] Bose Majumder N. C.: On the distance set of the Cantor middle third set. Bull. Cal. Math. Soc., 51 (1959), p. 93. MR 0112113
[3] Bose Majumder N. C.: A Study of certain properties of the Cantor set and of an SD-set. Bull. Cal. Math. Soc., 54, 1, March (1962), p. 8. MR 0167950 | Zbl 0114.38603
[4] Bose Majumder N. C.: On the distance set of the Cantor middle third set. III, Amer. Math. Monthly, 72 (1965), p. 725. DOI 10.1080/00029890.1965.11970598 | MR 0183819 | Zbl 0154.05403
[5] Erdös P., Kakutani S.: On a perfect set. Coll. Math., IV, 2 (1957). MR 0089886
[6] Kinney J. R.: A thin set of lines. Israel J. Math., 8 (1970), p. 97. DOI 10.1007/BF02771304 | MR 0265534 | Zbl 0213.07605
[7] Marczewski E.: Coll. Math., (1955), p. 125. Zbl 0066.29901
[8] Randolph J. F.: Distances between points of the Cantor set. Amer. Math. Monthly, 47 (1940), p. 549. DOI 10.2307/2303836 | MR 1524942
[9] Randolph J. F.: Real and abstract analysis. Academic Press, N. Y. (1968), p. 101. MR 0225618 | Zbl 0165.37201
[10] Šalát T.: On the distance set of linear discontinuum I. (Russian), Časopis pro pěstování matematiky, 87 (1962), p. 4. MR 0180959
[11] Sierpiński W.: On the congruence of sets and their equivalence by finite decomposition. Lucknow University Studies (1954). MR 0060567
[12] Steinhaus H.: Nowa vlastnośc mnogości G. Cantora. Wektor (1917), p. 105.
[13] Steinhaus H.: Sur les distances des points des ensembles de mesure positive. Fundam. Math., 1 (1920), p. 93. DOI 10.4064/fm-1-1-93-104 | MR 0065059
[14] Utz W. R.: The distance set for the Cantor discontinuum. Amer. Math. Monthly, 58 (1951), p. 407. DOI 10.2307/2306554 | MR 1527894 | Zbl 0043.05402
Partner of
EuDML logo