Previous |  Up |  Next

Article

References:
[1] I. Amemiya: A general spectral theory in semi-ordered linear spaces. J. Fac. Sci. Hokkaido Uni. 12 (1953) 111-156. MR 0056853 | Zbl 0053.25802
[2] K. A. Baker: Topological methods in the algebraic theory of vector lattices. Thesis, Harvard University 1966.
[3] S. J. Bernau: On hyper-archimedean vector lattices. Proc. Kon. Ned. Akad. V. Wetensch. 77 (1974) 40-43. DOI 10.1016/1385-7258(74)90011-0 | MR 0341017
[4] S. J. Bernau: Unique representations of Archimedean lattice groups and normal Archimedean lattice rings. Proc. London Math. Soc. 75 (1965) 599-631. MR 0182661
[5] A. Bigard: Groupes archimediens et hyper-archimediens. Séminaire Dubreil - Pisot 21 e (1967-68) no. 2.
[6] A. Bigard: Contribution a la théorie des groupes reticules. These University Paris, 1969.
[7] A. Bigard P. Conrad S. Wolfenstein: Compactly generated lattice-ordered groups. Math. Zeitschr., 107 (1968), 201-211. DOI 10.1007/BF01110258 | MR 0236083
[8] R. Bieter: Minimal vector lattice covers. Bull. Australian Math. Soc. 5 (1971), 411 - 413. MR 0295989
[9] R. Byrd P. Conrad, T. Lloyd: Characteristic subgroups of lattice-ordered groups. Trans. Amer. Math. Soc. 158 (1971) 339-371. DOI 10.1090/S0002-9947-1971-0279014-7 | MR 0279014
[10] P. Conrad D. McAlister: The completion of a lattice-ordered group. J. Australian Math. Soc. 9 (1969), 182-208. DOI 10.1017/S1446788700005760 | MR 0249340
[11] P. Conrad: Lattice-ordered groups. Lecture notes, Tulane University (1970). Zbl 0258.06011
[12] P. Conrad, J. Diem: The ring of polar preserving endomorphisms of an abelian lattice-ordered group. Illinois J. Mth. 15 (1971) 222-240. DOI 10.1215/ijm/1256052710 | MR 0285462 | Zbl 0213.04002
[13] P. Conrad: The essential closure of an archimedean lattice-ordered group. Duke Math. J. 38 (1971) 151-160. MR 0277457 | Zbl 0216.03104
[14] P. Conrad: The hulls of representable l-groups and f-rings. J. Australian Math. Soc. 16 (1973) 385-415. DOI 10.1017/S1446788700015391 | MR 0344173 | Zbl 0275.06025
[15] P. Conrad: Minimal vector lattice covers. Bull. Australian Math. Soc. 4 (1971) 35-39. DOI 10.1017/S0004972700046232 | MR 0272692 | Zbl 0199.34703
[16] P. Hill: Bounded sequences of integers. (preprint).
[17] W. Luxemburg, L. Moore: Archimedean quotient Reisz spaces. Duke Math. J. 34 (1967) 725-740. DOI 10.1215/S0012-7094-67-03475-8 | MR 0217562
[18] L. Moore: The lifting property in archimedean Reisz spaces. Indag. Math. 32 (1970) 141-150. DOI 10.1016/S1385-7258(70)80018-X | MR 0258707
[19] F. Pedersen: Contributions to the theory of regular subgroups and prime subgroups of lattice-ordered groups. Dissertation Tulane University (1967). MR 2616630
[20] J. Martinez: Archimedean-like classes of lattice-ordered groups. Trans. Math. Joe. 186 (1973) 33-49. DOI 10.1090/S0002-9947-1973-0332614-X | MR 0332614
[21] C. Nöbeling: Verallgemeinerung einer Satzes von Hern E. Specker. Inventiones Math. 6 (1968) 41-55. DOI 10.1007/BF01389832 | MR 0231907
[22] S. Wolfenstein: Contribution a l'étude des groupes reticules. These University Paris 1970.
[23] A. Zannen: M R 651. Math. Reviews 36 (1968), 142-143.
Partner of
EuDML logo