Previous |  Up |  Next

Article

References:
[1] N. Bourbaki: Espaces vectoriels topologiques. Chap. I-V. Hermann, Paris, 1953-1955.
[2] N. Bourbaki: Intégration, Chap. I-IV. Hermann, Paris, 1952.
[3] M. M. Day: Normed linear spaces. Springer, Berlin-Göttingen-Heidelberg, 1958. MR 0094675 | Zbl 0082.10603
[4] J. Dieudonné: Sur un théorème de Šmulian. Archiv der Math., 1952, 436-440. MR 0055567
[5] A. Grothendieck: Sur la complétion du dual d'un espace vectoriel localement convexe. C. R. Acad. Sci., Paris, 230, 1950, 605-606. MR 0040573 | Zbl 0034.37401
[6] A. Grothendieck: Sur les applications linéaires faiblement compactes d'espaces du type $C(K)$. Canad. J. Math. 5, 1953, 129-173. DOI 10.4153/CJM-1953-017-4 | MR 0058866 | Zbl 0050.10902
[7] A. Grothendieck: Critères de compacité dans les espaces fonctionnels généraux. Amer. J. Math. 74, 1952, 168-189. DOI 10.2307/2372076 | MR 0047313 | Zbl 0046.11702
[8] A. Grothendieck: Produits tensoriels topologiques et espaces nucléaires. Memoirs of the Amer. Math. Soc, 1955. DOI 10.1090/memo/0016 | MR 1609222 | Zbl 0123.30301
[9] E. Hewitt: Rings of real-valued continuous functions. I. TAMS, 2, 1948, 45-99. DOI 10.1090/S0002-9947-1948-0026239-9 | MR 0026239 | Zbl 0032.28603
[10] M. Katětov: Projectively generated continuity structures: a correction. CMUC 6, 1965, 251-255. MR 0219027
[11] G. Köthe: Topologische lineare Räume I. Berlin, 1960. MR 0130551
[12] V. Pták: A combinatorial lemma on the existence of convex means and its application to weak compactness. Amer. Math. Soc, Proc. Symp. in Pure Math. 7, 1963, 437-450. DOI 10.1090/pspum/007/0161128 | MR 0161128
[13] V. Pták: An Extension Theorem for separately continuous functions and its application to functional analysis. Czech. Math. J. 89, 1964, 562-581. MR 0172108
[14] V. Pták: Weak compactness in convex topological linear spaces. Czech. Math. J. 4, 1954, 175-186. MR 0066550
[15] S. Tomášek: On a theorem of M. Katetov. CMUC 7, 1966, 105-108. MR 0229193
[16] S. Tomášek: Über eine Klasse lokalkonvexer Räume. General Topology and its Relations to Modern Analysis and Algebra II, Proc. Symp., Prague 1966, 353-355.
[17] S. Tomášek: On a certain class of $\Lambda$-structures. I. Czech. Math. J. (to appear).
[18] S. Tomášek: $\Lambda$-structures and their applications. Thesis, 1966 (in Czech).
Partner of
EuDML logo