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Abstract: This article presents basic procedures for calculating the trajec-
tory of a spaceship that uses only the Earth’s atmosphere to reduce its speed,
allowing it to land on the Earth’s surface successfully. The first flight of the
ARTEMIS program, which took place from November 16 to December 11 2022,
was used as a template for the calculations. All calculations are performed
in the symbolic algebra program Maple. To simplify the calculations, forces
that have a less significant impact on the shape of the trajectory, such as the
gravitational influence of the Sun and Moon, the rotation of the Earth, and
its non-spherical shape, were neglected. To conserve space, only the essen-
tial components of the solution are shown, given the intensive calculations
involved. The commands used to produce the graphics are not included.
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1. Introduction

The Artemis I mission inspired this article, which expands on the mathematical
models the author developed in 2002, see [3].

Spacecraft landings are among the most demanding phases of space missions.
Lunar missions necessitate precise trajectories, mandating frequent course correc-
tions. Altering the spacecraft’s direction and velocity during lunar orbit insertion
and Earth return is also crucial. Fuel consumption is directly linked to the space-
craft’s overall mass, meaning more fuel is required for final maneuvers if more is
needed for mid-course corrections. Given the limited launch mass of rockets, fuel
for course corrections is also limited. To conserve fuel during atmospheric reentry,
spacecraft utilize aerodynamic drag, a process that doesn’t consume fuel.

All input variables for the forthcoming calculations are expressed numerically
using SI base or derived units. To conserve space, only numerical values will be
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Figure 1: ARTEMIS I Mission Map, [1].

presented. For spacecraft returning from lunar trajectories, reentry speeds approach
the escape cosmic velocity, ≈ 11.2e3. Martian return speeds are significantly higher,
around ≈ 21e3. The Orion spacecraft during the ARTEMIS 1 mission reentered at
W = 10.7e3, detailed in [2] and see Fig. 1.

2. Derivation of equations of motion

We start with the fundamental form of Newton’s equations of motion:[
d2 x(t)

dt2
,
d2 y(t)

dt2

]
=

1

M
[Fx (x(t), y(t)) , Fy (x(t), y(t))] , (1)

where x and y represent rectangular coordinates with the origin at the Earth’s center.
The positive x-axis points towards the initial point of the landing trajectory, located
at [x0, 0] , x0 = 1e6, where the spacecraft is at time t = 0 and ~F is the vector repre-
senting the total force acting on the spacecraft, which has a mass of M = 1.00375e5,
see [5].

The primary forces acting on a descending spacecraft are the gravitational force
~G ≡ [Gx, Gy] and and aerodynamic drag ~D ≡ [Dx, Dy]

|~G| = κMeM

r2
, | ~D| = Cx ρ(h)S V 2

2
. (2)

In these equations: Me = 5.97e24 is the mass of the Earth, κ = 6.67e−11, r is
the distance of the spacecraft from the Earth’s center, Cx = 1.5 is the spacecraft’s
drag coefficient, see [6], S = 19.6 is the spacecraft’s frontal area, see [5] and V is the
spacecraft’s velocity.
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The function describing the variation of atmospheric density ρ with altitude h
above the Earth’s surface is

ρ(h)=e

(
(c1 h2−c2 h+c3)He(c4−h)− (c5 h−c6)He(h−c4)

h+c7

)
, where

c1 = 6.392146930e−11
c2 = 1.447577359e−4
c3 = 3.316213319e−1
c4 = 1.044139387e5

c5 = 3.502764072e1

c6 = 1.41258792e6

c7 = 5.494654461e4

He=Heaviside function

. (3)

The function ρ(h), defined by equation (3), is a generalization of atmospheric density
relationships found in [7]. The coefficients c1, . . . , c7 were computed in Maple using
a least squares fit to a nonlinear, piecewise defined regression model for atmospheric
density, based on tabulated values in [4].

The following substitutions can now be used:

Fx = −Gx −Dx, Fy = −Gy −Dy, r =
√
x(t)2 + y(t)2, h = r −RE,

V =

√
d x(t)
dt

2
+ d y(t)

dt

2
, Gx = |G|x(t)

r
, Gy = |G|y(t)

r
, Dx = |D|

V
dx(t)
dt
, Dy = |D|

V
d y(t)
dt

, (4)

where RE = 6.378e6 represents the Earth’s radius. These substitutions, along with
equations (2), (3) and the provided numerical values, can then be used in equa-
tion (1). Because of space limitations, we are unable to show the final form of these
equations.

3. Calculation of the return trajectory in Maple

A description of the derivation of the equations of motion in Maple would be
very lengthy and formally identical to the previous chapter. Therefore, we will
assume that the equations of motion have already been derived in Maple from the
substitutions (4), (3) and (2) into equation (1) and that this vector equation has been
divided in Maple into two equations describing the motion in the x and y axes. These
equations have been named EQx and EQy in Maple. Both equations form a system of
ordinary nonlinear second-order differential equations. Their numerical solution and
the search for the optimal return trajectory of the spacecraft are the subject of this
part.

By the optimal return trajectory, we mean a trajectory that minimizes decelera-
tion caused by aerodynamic drag. To quantify this deceleration, we introduce a new

variable, Ag =
√

Dx2+Dy2

g
, representing the aerodynamic load factor in multiples of

the standard gravitational acceleration, g = 9.81. A commonly used term for this
quantity is g-force. Here, Dx and Dy represent the components of the aerodynamic
drag force in the x and y directions, respectively.

If the g-force is maximal, then the condition for the existence of an extremum
of a continuous function must hold: dAg(t)

dt
= 0 and the corresponding time t for

which this condition is fulfilled can be found using the Newton-Raphson method.
However, the complication lies in the very complex form of the variable Ag. It
contains multiple occurrences of both d x(t)

dt
and d y(t)

dt
always within the arguments

of nonlinear functions. Given that the use of the Newton-Raphson method requires

9



the computation of Agt = dAg(t)
dt

and Agtt = d2 Ag(t)
dt2

an analytical expression of these
variables would be possible but practically unusable. The analytical expression of
Agtt alone contains 66200 characters and occupies over 300 MB in Maple’s memory.

However, we can still proceed with a numerical solution. To do this, we must first
define the following initial conditions: W:=1.07e4: Alpha:=78.0: RE:=6.378e6:

x0:=RE+1e6: y0:=0. These values represent the spacecraft’s initial position at time
t = 0 which is [x0, y0], and its initial velocity W, which makes an angle of Alpha

degrees with the direction towards the center of the Earth.
Once the initial conditions Ini are defined, we can numerically solve the system

of equations EQx and EQy to obtain a solution Ns. This solution provides the values of
the coordinates and their corresponding velocities at any given time, as demonstrated
in the last line of the following code.

> alpha:=evalf(convert(Alpha*degrees,radians));

> Ini:=x(0)=x0,y(0)=0,D(x)(0)=-W*cos(alpha),D(y)(0)=W*sin(alpha):

> Ns:=dsolve({Ini,EQx,EQy},{x(t),y(t)},numeric):
> Ns(500.);[
t=500.0, x(t)=5249645.296,

d x(t)

dt
=−121.112, y(t)=3646265.675,

d y(t)

dt
=−73.279

]
A slightly modified Ns(tf) procedure allows for the numerical computation of the

third time derivatives of coordinates x and y at time tf. The resulting values are
then substituted into variables Agtt and Agt with the aim of applying the Newton-
Raphsson method to determine the maximum g-force and the corresponding time.

After deriving the equations of motion EQx and EQy, the general analytical ex-
pressions for the third time derivatives of the coordinates, Xttt:=diff(rhs(EQx),t):
and Yttt:=diff(rhs(EQx),t):, must be obtained. Before initiating the iteration, the
first element SUNs:= Ns(tau)[2..-1]: needs to be extracted from the output of Ns.

Now, the iterative procedure AGmax can be used to determine the exact time at
which the maximum overload occurs. The input parameter for this procedure is an
estimate of the time when we expect the maximum g-force to happen.

AGmax := proc(tau) global tau, SUNs;

local dt, Xtts, Ytts, Xttts, Yttts, Agtts, Agts;

dt:=1: SUNs:= Ns(tau)[2..-1]:

while abs(dt)>1e-6 do:

Xtts:=diff(x(t),t,t)=evalf(subs(SUNs,rhs(EQx)));

Ytts:=diff(y(t),t,t)=evalf(subs(SUNs,rhs(EQy)));

Xttts:=diff(x(t),t,t,t)=evalf(subs(Xtts,Ytts,SUNs,Xttt));

Yttts:=diff(y(t),t,t,t)=evalf(subs(Xtts,Ytts,SUNs,Yttt));

Agtts:=evalf(subs(Xttts,Yttts,Xtts,Ytts,SUNs,Agtt));

Agts:=evalf(subs(Xtts,Ytts,SUNs,Agt));dt:=-Agts/Agtts;tau:=tau+dt;

end do:

end proc:
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Similarly, the landing time, i.e., the time at which the altitude h = 0, can be
determined. The calculation is performed by the procedure Tau, again using the
Newton-Raphson method. The input parameter of the procedure is the estimated
landing time.

Tau := proc(T) local dt, tau;

dt := 1.0; tau := T;

while .1e-3 < abs(dt) do

dt := subs(Ns(tau),-h/diff(h,t)); tau := tau+dt end do;

tau

end proc;

Given the specified initial conditions, the trajectory can now be computed. The
landing time, denoted by t0 - #1, is initially determined using the subroutine Tau.
The trajectory is then visualized using the odeplot command and saved as TR - #2.
Similarly, a plot of the overload versus time is generated and saved as GT - #3. The
coordinates of the data points on this plot, represented as [t, Ag], are extracted and
stored in the matrix MG - #4. From this matrix, approximate values of the maximum
g-forces and their corresponding times are determined and stored in MMG - #5. Con-
sidering the selected entry angle, multiple maxima, denoted by nu - #6, may exist.

A loop spanning lines #7 - #11 processes the approximate value of each maxi-
mum. The subroutine AGmax - #8 is employed to calculate the precise times corre-
sponding to these maxima, and the exact g-force values are stored in Agf - #9. The
ordered pairs [time of maximum, maximum g-force] are then collected into the list
AGF - #10.

> t0:=Tau(t0); #1

> TR:=display(odeplot(Ns,[x(t)/RE,y(t)/RE],0..t0,numpoints=1000)): #2

> GT:=odeplot(Ns,[t,Ag],0..t0,numpoints=1000): #3

> MG:=convert(op(1,op(1,GT)),Matrix); #4

> MMG:=[seq(‘if‘(MG[i-1,2]<MG[i,2] and MG[i,2]>MG[i+1,2],

[MG[i,1],MG[i,2]],NULL),i=2..999)]; #5

> nu:=nops(MMG); AGF:=[]; #6

> for k from 1 by 1 to nu do #7

> tau:=MMG[k][1]; AGmax(tau); #8

> Agf:=evalf(subs(SUNs,Ag)); #9

> AGF:=[AGF[],[tau,Agf]]; #10

> end do: #11

4. Calculation of the optimal trajectory

The optimal trajectory is designed to minimize the overload during aerodynamic
braking while also considering the descent time. For this reason, it is advantageous
to select an entry angle into the atmosphere that results in two overload peaks of
equal magnitude. It is possible to find return trajectories with three or more g-force
peaks, but following these trajectories results in circumnavigating the entire Earth
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Figure 2: Trajectory with 3 g-force peaks.

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

–0.2 0.2 0.4 0.6 0.8 1 1.2

IP

LP

W
 =

 10.7 km
/s

x [Earth radii]

y 
[E

ar
th

 r
ad

ii]

a 
=

 6
8.

8°

Figure 3: Detail.

on a high-apogee orbits, see Figures 2 and 3. This significantly increases the landing
time. Therefore, these trajectories were rejected.

By following the procedure outlined in Section 3 and appropriately selecting the
interval of the angle Alpha and the step size dAlpha, such an angle can be found very
quickly, see Figure 4.

The optimal value is α = 68◦ 37′ 8.08′′ ± 0.04′′. Landing occurs at t0 = 847.93±
0.01 [s] from the moment the spacecraft was at the initial point. The maximum
g-gorce is Ag = 6.430± 0.001 [g] and the g-force peaks occur at times t1 = 443.33±
0.01 [s] and t2 = 550.94± 0.01 [s], see Figure 5. Figure 6 illustrates the dependence
of a spacecraft’s flight altitude on time, while Figure 7 depicts the time evolution of
the spacecraft’s velocity.

Figure 8 presents the dynamics of the final landing maneuver for the optimal angle
as a 3D curve [Ag(t), V (t), h(t)], along with its projections onto the [Ag(t), V (t)],
[Ag(t), h(t)], and [V (t), h(t)] planes.

5. Conclusion

The presented calculations underscore the critical role of precise navigation in
spacecraft reentry. The range of angles α that guarantee a safe landing is exception-
ally narrow. If the spacecraft deviates from the optimal value of α = 68◦ 37′ 8.08′′ ±
0.04′′ by −3′ 50′′, the landing g-force will exceed 10g. A deviation of −17′ 46′′ will
result in a g-force exceeding 20g, which could have fatal consequences. Additionally,
at low entry angles, the heat shield may not provide sufficient protection, as the rate
of conversion of kinetic energy to thermal energy can be very high.

If the value of angle α increases by 10′ 21′′, the landing will occur after one day,
or 86 400 seconds, after passing the initial point. If the deviation is 11′ 50′′, the
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landing will occur after two days. This means that a difference of one arcminute and
twenty-nine arcseconds results in a full day extension of the flight time. This could
be a significant complication for the spacecraft crew after separation from the service

13



0

10

20

30

40

50

60

70

80

400 500 600 700 800 900 1000t [s]

h
 [

km
]

Figure 6: Flight height a function of the time.

0

2

4

6

8

10

300 400 500 600 700 800 900 1000t [s]○

V
 [

km
/s

]

Figure 7: Flight velocity a function of the time.

module. Furthermore, increasing the deviation from the optimal angle leads to an
exponential increase in landing time. If the spacecraft were to pass the initial point at
a speed higher than the escape velocity, it would enter a solar orbit and never return
to Earth. This is the case for spacecraft returning from interplanetary missions.

This means that the range of atmospheric entry angles is very narrow, approxi-
mately one quarter of a degree. Therefore, the accuracy and quality of mathematical
modeling play a crucial role in solving this problem.

A Maple worksheet with all commands, including the generation of graphics, will
be posted on the Maple application center in the near future.
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Figure 8: Landing dynamics.
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