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SEVERAL CLASSES QOF UNIFORM SPACES CONNECTED WITH BANACH
VALUED MAPPINGS

Jir{ Vilimovsky

In 1975, Z.Frolik, J.Pelant and the author wrote a paper concer-
ning rings of uniformly continuous functions and extensions of uni-
formly continuous (real valued) functions ([7]), which appeared in
the last volume of Seminar Uniform Spaces. The aim of this note is to
examine to what extent similar results are valid for uniformly conti-
nuous functions into infinite dimensional Banach spaces.

All uniform spaces are supposed to be separated, all locally con-
vex (topological vector) spaces are supposed to be over the field of
reals endowed with its natural translation invariant uniformity. By
U(X,Y) we denote the set of all uniformly continuous mappings from
X into Y; if Y is the real line (with its natursal metrisable uni-
formity), we write simply U(X). Further we use the following symbols:
R for the real line, I for a compact interval, H(A) Zfor a hedge-
hog over a set A . Recall that H(A) 1is the set of all <a,x>,
a€A , 0Sx=1 , where we identify 0 =<a,0> = <b,0> for all
a,b€A , with the metric

a(<a,x>, <b,y>) =\’|ml e T
X+y otherwise .

We recall that H(A) 1is an injective uniform space ([J..?]), which
means that all uniformly continuous mappings ranging in H(A) extend
from arbitrary subspaces to a uniformly continuous mapping. If X is
a uniform space, Dy X-tf we shall understand the class of all uni-
form spaces ¥ such that each f€U(Y,X) remains uniformly continu-
ous into the corresponding {(topologically) fine uniformity tfx s it
follows from Eli] that X-tf always forms a coreflective subcategory

of uniform spaces.
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At first we recall the main result of paper [7:]:

Theorem_O: The following properties of a uniform space X are equi-
valent:

(1) X 1is H((d)-tf

(2) X 1is I-I(m)-tf for arbitrary infinite cardinal m

(3) X 1is hereditarily R-t,

(4) X 1is hereditarily Rn-tf for any natural number n

(5) For each subspace Y of X, U(Y) is a ring (under
pointwise operations)

(6) If {fn;nEw} is a countable family of bounded uni-
formly continuous functions on X such that the fami-
ly {coz fn;nEw} is uniformly discrete in X , then
the function Z{fn;ne w} is uniformly continuous.
(In other words the family {fn;nEw} is uniformly
equicontinuous.)

(7) If the families {Bn;nEw} ’ {An.;i=l,2,...,kn} are
both uniformly discrete in X , B; =U{An.;i=l,2,...
..,kn} , then the family {An.;nEw ,i=1,§,,...,kn}
is uniformly discrete in X '

(8) U(X) 1is a ring and each uniformly continuous function
on a subspace of X has a uniform extension over X .

Moreover the descrived class 1is the largest coreflective subclass
contained in the class Ext consisting of all X such that for each
subspace Y of X and f€U(Y), there is f€U(X) extending f .

The present paper 1is divided intc three parts. The first one will
generalize the property (7) to countable uniformly discrete unions of
aroitrary uniformly ciscrete famiiies andé show that 1t is an impor-
tant proparty for some »naznach valued mappings to be distally continu-
cus. The secondé part will exsmine those spaces X , for which U(X,E)

is a module over U(¥) for any Banach space X . it will appear that
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spaces having hereditarily this property have a very nice description
in terms of countable sums of Banach valued mappings and also in terms
of a sort of local fineness. The last part contains some results on

extensions of uniformly- continuous Banach valued mappings. Throughout

the paper some problems are stated.

Let X Dbe a uniform space. We shall call a family {Ac; LE I} of

subsets of X hyperdiscrete, if I =U{Ia;a€J} and the femilies
{U{AL; LGIa};aGJ} , {A ; LEIa}

are uniformly discrete in X for all a€dJ . If J 1is supposed to
have cardinality & , we call the family {AL} @w - hyperdiscrete.
A uniform space X 1is called hyperdistal (resp. W - hyperaistal),
if each hyperdiscrete (W - hyperdiscrete) family in X 1is uniformly
discrete. (Hyperdistal spaces were defined originally by Z.Frolik in

[5].) For illustration we present the following result:

discrete family in M 1is w - nyperdiscrete.
Proof: Let (X, ;a€4  , bGd} be a hyperdiscrete family in i anc
let M have & metric d . For each b€&€3 we let
£ b = inf {d(xab , Xa,b);a,a’e nb} .
Obviously E,b>0 « Then we let
= i . l = : Re L < ; o
3 ={v€s; $<t,}, 3 ={v€a; 1 <g g} ror
n>1 ,
AL =U,{A‘b;‘o€dn} for natural n .
The rest of the proof is evident.
Observe that the concept of an W - hyperaistal space depencs on- .

ly on the structure of uniformly discrete families (distality) oI zhe

space. One can see that this concept is a strengthening of the proper-

ty (7) in Theorem O, so each (W - hyperdistal space enjoys the pro-
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perties of Theorem Q.

Let « be an infinite cardinal number. We shall denote by D(«&)

the uniform space on the set &= with basis {’un}new s Where
’l,bn = {{(b,k)}; LEK » k<n}U{&l{k};k>n} .

All spaces D(« ) are complete metrizable zero dimensional topologi-

cally discrete uniform spaces. Recall that a mapping between uniform

spaces is called distally continuous if preimages of uniformly discre

te famiiies are uniformly cdiscrete.

- e oo e

valent:

(1) X is w - hyperdistal

(2) X 1is hereditarily D(« )-t, for any cardinal number
«

(3) For any cardinal number A& the following holds: when-
ever fn : X—’,Lm(a(,) is a countable family of uni-
formly continuous bounded mappings such that
{supp fn;nEw} forms a uniformly discrete family,
then the mapping Z{fn;ne w} is distally continu-
ous

(4) The condition (3) assuming only distal continuity of
the mappings fn

(5) For any cardinal number a and for each subspace Y

{6)

(7)

of X, if PEU(Y, £_(a)), then f£° is distally

continuous

for any oanach space E, fnG U(X,E) boundea, the map-

Z{fn;nEw} is distally continuous provided

ping
that the family {supp fn;nEu)} is uniformly dgiscre
te

Condition (6) assuming only <¢istal continuity of the

mappings fn
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(8) For any Banach algebra E and for any subspace Y of

X, if £EU(X,E), then £° is distally continuous.

Proof: Using the well known fact that each Banach space is embeddable
into some space Lm(m) as a topological vector subspace and each
Banach algebra is embeddable into some lm(a) as a Banach subal-
gebra (see [l:])», we have immediately that (3)*=6), (4)=(T7), (5)e=
+=(8), (1)=2(4): Suppose {AL ; LEI} is a uniformly discrete family
in ,loo(a( ). We may assume that the point O is not contained in
any of the sets A, . For each n the family {fglfAJ; ¢.€I} is
uniformly discrete in X , its union is a part of supp fn , hence
the family {f;l[AJ;nE w, L EI} is w - hyperdiscrete, and hen-
ce uniformly discrete. If we put f =Z{£n;n€w} » We have f'IEA,:]=
=U{f;l[AJ ;nElo} , hence the family {f’IEAJ; LGI} is uniformly
discrete. This implies the distal continuity of f .

easy fact:

Lemma: Let f : X—Y be a mapping between uniform spaces. Suppose
for some finite uniform cover # of the space X the mapp-
ings f|P are distally continuous for all PE¢# ., Then f
is distally continuous.

Proof _of the_lemma: Recall that f 1is distally continuous if and on-

ly if the f-pre-image of each finite-dimensional uniform cover is uni-
form. Now the lemma follows immediazely.

Let B(r) denote the closed ball in Zm(o‘.) centred in O with
the radius r (for a positive real r ), B(0) = J. Take arbitrary
fE€U(X, L (& )). For any natural n we denote

X = 1 [B(n + %)'\ B(n—l_;] .
The families {Xn;n odd} ’ {xn,n even}, are both uniformly discrete
in X . For all n we define an u(x, Lm'(a.)) bounded in the fol-

lowing manner: At first we put
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zfx = g|x L2 et L aNsm+ 8] =0, £ s -2 = o.
The family
{(x, £ [ (x~s@+%)] , £ s - 1)
is uniformly discrete in X , fn partly defined on its union is uni-
formiy continuous into d(n + %). So we can find its uniformly conti-
nuous extension an U(X,3(n + %)), because a closed ball in the spa-
ce ’Zoo(“') is an injective uniform space (see Isbell [9_] ). Each
f‘n 1s uniformly continuous and bounded, hence each fﬁ. is again
bounde¢ and uniformly continuous and the following families of mapp-
ings:
{fﬁ;n odd} q {f’i;n even}
fulfili the assumptions of condition (3), hence the mappings
F =Z{f§;n oagd } N =Z{fﬁ;n even}

re distally continuous.
Now if we Qenote A =U{Xn;n odd} , B =U{Xn;n even} sy the cover
\ 3 -
{A,.ﬁ) is a finite uniform cover of X , the restrictions f2|A = F|A,

Ps

fc’

B = G|B are distally continuous, hence using our lemma the mapp-
ing £° is also céistally continuous. The rest follows from the obvi-
ous nereditariness of the property (3).

{(5)=>(2): We define the embedding j of the space I(a ) into

L (&) as follows:
J(<L,n>) = {Xa} , where T

of course, j is a uniform embedding of D(a ) into AL_(a&) . If
Y 1is a subspace of X , f€U(Y,I(a« )), then the mapping (J'f)2 = jzf
ie distall s Be o - . . -

1s cistally continuous, j°{D(a )) 1is uniformly discrete, hence

£ [:(oc )] is uniformly cdiscrete, and hence fEU(Y,th(aL )P
{e;=2{1) is obvious, and finishes the proof.

semsrks: &) The class of all w - hypercistal spaces is coreflective

in uniform spaces. This is easy to see, for example veri-
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fying that condition (3) is closed under uniform sums
and quotients.

b) The classes from Theorem O and Theorem 1 differ. For ex-
ample if we take the space D(w ), the coreflection of
it in H(w)-tf has for basis covers, the trace of which
on each éolumn {rx}'td is a finite partition, so it is
not uniformly discrete, while the @ - hyperdiscrete co-
reflection of D(w ) 1is uniformly discrete.

c) If we consider the w - hyperdistal coreflection only in
the structure of distal spaces, we can compare it formal-
ly with the e-locally fine coreflection ([5]) in uniform
spaces, Jjust as the hyperdistal coreflection in distal
spaces 1s comparable formally with the locally fine core-
flection in uniform spaces (see [é]). One can construct
these coreflections step by step using transfinite induc-
tion, as it is shown for a hyperdistal coreflection of a

given distal space in [é] .

The classes ilod and HerMod:

If X 1is a uniform space and E 1is a Sanach space, recall that
for fEU(X,E) , g€EU(X) the product <f.g 1is uniformly continuous
whenever both f,g are bounded, but fails to be uniformly continuous
in general. wWe shall denote by Mod the class of all uniform spaces X
such that for any oanach space E,U(X,E) 1s a mocule over U(X).
HerMod will cdenote the class of all spaces having hereditarily the

property NoG.

valent:
(1) X hes the property Mod
(2) U(X, L(a)) is a module over U(X) for any cardi-
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nal a
(3) For any Banach space E, fE€U(X,E), the mapping x—
£(x) ”f(x) “ is uniformly continuous
(4) The condition (3) restricted to spaces loo(at) only
(5) For any cardinal number a« , fEU(X, ,6';0(&)) ,
gEU(X,R+), the mapping f.-g is uniformly continuous.
(/()Zo ,R" stand for respective positive cones.)
Proof: (2)=%(1) for the same reasons as in Theorem 1, the implicati-
ons (1)=>(3), (3)=%(4) are evident.
{4)==(5): We prove at first that condition (4) implies that the pro-
duct of any two positive real valued uniformly continuous functions
u,v on X 1is uniformly continuous. The condition (4) gives for
L12,v2

& =1 1immediately the uniform continuity of functions and

(u+v)2. The assertion follows from the identity

u-v =% ((u+v)? - u? - v2) .
Now taking arbitrary mappings f€ U(X, [;0(00 )) gGU(X,R+), we defi-
ne GEU(X, [;o(“ )) as the diagonal mapping:

6(x) = {g(x),g(x),.00 } .
Cbserving that ”f‘(x) + G(x) “ = “f(x)” + g(x), we have

£(x)-g(x) = (£(x) + 6] £x) + a0 £ |le=) | -

- G(x)-”f(x)” - G(x)-g(x) .

The first two summands on the right side are uniformly continuous im
mediately from (4), the others are uniformly continuous because of
urnijorm continuity of real valued functions g2 and x—og(x)-“f(x)”
nence also the mapping f.g 1is uniformly continuous.
(5)=(2): Take any fE€UX, ,&OO(:K,)) and rewrite it as f_ - f_ ,
where f_ ,f_ are from U(X,/ﬂ';o(a(, )). Similarly we represent any
g€ U(X). The asseriion follows now from the eguality:

o Eal

f-g=f,-¢g, + 1 _-84_ -f'_-g+—f+-g_ .

remarks: a) One can eusily verify that the class Mod is closed unde
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uniform sums and quotients, so it is a coreflective sub-
class of uniform spaces.
If Y 1is any locally convex space, Y can be embedded in-
to some product of Banach spaces as a topological linear
subspace. Therefore if X€Mod, then U(X,Y¥) 1is a module

over U(X) for all locally convex spaces Y .

The class Mod is not closed under subspaces, even each uniform spa-

ce can be embedded into some space in Mod. We shall turn to the class

HerMod of all spaces being hereditarily in Mod now and we show that

it has a very nice description.

Theorem 3: The following properties of a uniform space X are equi-

valent:

(1) X is HerMod

(2) For any cardinal a and for any subspace Y of X ,
Uu(yY, loo(a,)) is a module bver u(y)

(3) XEMod and for each subspace Y of X , fEU(Y), the-
re is fEU(X) extending f

(4) X 1is simultaneously Modé and H(a))-:f

(5) If £ EU(X, ,Loo(a, )) (a 1is an arbitrary cardinal
number) is a countable family of bounded uniformly con-
tinuous mappings such that the family {supp fn;néfa)}
is uniformly discrete in X , then the mapping
f =Z’,{fn;n€a)} is uniformly continuous

(6) Condition (5) for anZU(X,E) for each Banach space E

(7) For any cardinal number & and for any subspace Y of
X, U(Y, £ («)) is a ring

(8) Condition (7) for any Banach algebra

(3) Each cover of the form {Unﬂvg}new a€a is a uni-

is a fini-

form cover of X, provided that {Un}nEw

te-dimensional countable uniform cover and for each
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new , {"z}ae,‘, is a uniform cover of X .
Proof: ~guain we cen easily ooserve the equivalences (1)=(2), (5)e=

(6), (7Y=(8). The rest of the proof will follow the schema:

(2)=(3)=2(4)=(5)==2(3)=(7)=*(2) .

(2)=>(3): If Y 1is a subspace of X , then obviously U(Y) is a
ring, anc¢ the assertion follows from Theorem O.
This is immediate from Theorem O.
£4)=2(5): ModNH(w)-t, is an intersection of two coreflective class-
es, hence it itself is a coreflective subclass of uniform spaces. Let
us cenote for a while F the corresponding coreflector.

Teke £ € U(X, ’Loo(“’ )) Dbounded with the uniformly discrete fami-
y °f their supports. We may and shall assume that none of them is an
identical zers mapping. We putl:

f_(x)

gn(x) = —f——— | where “ . ||= sup {“ fn(x)“;xEX} 5

|
The mappings g, converge uniformly to O, hence

g =) {8in€w}
is uniformly continuous and bounded, s8c it has all its values in some
closec ball 3. according to the ingectivity of H{w ) and uniform
discreteness of the family {supp fn}n we can find DEU(X,H(w)) .
such that for each x€supp £~ there is p{x) = <n,1> . We denote
Y = gxb the cartesian product of the mappings g,b. There is €
€EUX,z*H(& )), hence there is also VE€U(X,r(B=H(w ))). If we deno-

tepy 4., , #, the corresponcing projections onto B,H{w ), we ha-
ve:
TL€U(F(xE(w)), £ (), T,€EU(F(oxtlw)), tgH(w )).

low, pecsuse t H(W) allows extensions of real valued functions, we

can £in¢ the function hEU(tH(w)) suck that h(<n,1>) = |z |-2"
Using the fact that F(2:H(@ ))€EMoc, the mapping
G = ((ho'ﬂz)'Wl)oU’

from X into loo(a(,) is uniformily continuous. ( o stands for com-
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position of mappings, - for an algebraic product.) It is easy to ve-
rify that
yZ fn(x) for x€ supp fn
G(x) = \

O otherwise .
Therefore G =Z{fn;n€w} is uniformly continuous. (Notice that
instead of supposing that X€EMod, it was sufficient to suppose that
the product of each bounded uniformly continuous mapping into ‘too(")
with any function from U(X) is uniformly continuous.)
§5)=2(9): make {U } o
is, w =U{Ak;k=l,2,...,m}, {Un;nEAk} is a uniformly discrete fa-

an m-discrete uniform cover of X , that

mily for each k=1,2,...,m . Let us take further for each n€& a
uniform cover {Vg}a of the space X . We shall denote 7=
= {v,nva)

each nEAk we find some fn bounded uniformly continuous from X

& d , W is a cover of X . Now choose some 1Sk <m. For
9

into some ’Loo such that the family {supp fn;nEAk} is uniformly

discrete in X and the cover f;]'(!-,’ (1))|IJn refines {Unnvg}a for
all nGAk. (¥ (1) denotes the usual metric cover of the space ‘Loo
with unit balls.) This is possible, because {Un;nGAk} is uniformly
discrete in X &and the closed balls in 'Lco are injective uniform
spaces. The condition (5) gives the uniform continuity of the mappings
Fk =Z{fn;n€Ak}; k=1,2,...,m. NOw we observe that the cover
{U{Un;nEAk} ; k=1,2,..., }
is a finite uniform cover of X, for each k the cover
Fil(b"(l))IU{Un;nGA.k} refines WlU{Un;nEAk} ,
hence the uniform cover
/\{F;lh(,'-f’(l)); k=l,2,...,m} refines UW.
{3)==(7): Let oS(r) for a positive real number r denote again the.
closed ball in 'Loo centred in O with radius r , 8(0) = @g. Take
arbitrury f€U(X, I’oo) and denote for each natural n:
X =t [8(n + H)NB(n-1)]
{xn}n is & 2-discrete countable uniform cover of X. For each £ >0
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and for each n the cover (fz}-l(y’(e)) is uniform on X, , so

there i1s a uniform cover {Vg}a of X refining it on Xn . So the
2,1 . .

cover (£f°) (¥ (£ )) is refined by a cover ‘{an\vg}n,a ,

ter being uniform on X according to (9). Therefore the mapping f2

the lat-

is uniformly continuous.
The rest follows from the identity
1

£.g =3 ((£+g)?- (£-g)%)

and-from the evident hereditarineas of the property (9).
€U(X, L _) the mapping x-wf(x)wlf(x)“ is uniformly continuous.
but this is easy, as one can take the diagonal mapping
x={zx | e ... hevx, £)
instead of (x—»”f(x)“)EEU(X) and (7) gives the desired uniform con-

tinuity.

Remarks: &) The condition (4) implies immediately that the class Her-
Mod is coreflective in uniform spaces, the property (9)
allows the construction by use of transfinite induction
for each X 1its coreflection in HerMod. The method is
describecé for instance in [Q] for constructing the local-
ly fine coreflection.

p) If r 1is a set-preserving reflector in uniform spaces

{(i.e. the corresponding reflective class 1is closed under

products, all subspaces ané contains a compact interval), |

the space X 1is called r-locally fine (following Z.fro-

1lik [E]), il each cover {Uaf\Vg}a p 1s uniform on X,
i

4 Y
whenever iU,] 15 a uniform cover of rX and for all
& the covers :}h ars uniform o X . So if we denote
N ol S . : 1
as usual T tne 3epurzdle distal reflector (i.e. D°X

chooses finite-dimensional countable uniform covers, (see

for instance [{]/, the condition (9) says nothing else
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than that the class Herlod is exactly the class of all
Dl-locally fine uniform spaces. Also quite interesting is
the class of e-locally fine spaces, where e denotes the
separable reflector in uniform spaces, called by M.Rice
locally sub-metric-fine spaces and studied in [}3] ,[iQ].
Obviously the class of all e-locally fine spaces is con-
tained in HerMod (from condition (9)), but it seems to be
an open problem, whether these two classes coincide or
note.

c) Looking through Theorems 1 and 3, we can immediately see
that each space in HerMod is w - hyperdistal. The con-
verse is not true, as the following example shows: Let X
be a uniform space on the set R¥ , the base of which is
formed by all open finite-dimensional covers of the pro-
duct space R® . X is a separable space, uniformly dis-
crete families of which are the same as in t X = tfR“’ ,
hence X 1s w - hyperdistal. On the other hand X #

# t.X and from the condition (3) of Theorem 3 it direct-
ly follows that X is not HerMod.

d) for the same reasons as in the Remark b) to Theorem Z, we
can see that if X 1s HerMod and ZE any locally convex
space, then U(Y,E) 1is a module over U(Y) for any sub-
space Y of X. Similar remarks can be added for otner

conditions in Theorem 3.

Extensions of cunuch vulued mappings:

If K 1s a class ol tanach spaces, we shall use the following no-
tation: Ext(IK) will denote tne class of all uniform spaces £ such
that whenever Y 1is a subspace of X, E a space from K ,f€UY,Z),
then there is a uniformly continuous extension ?EU(X,E) of T -

Ext {K) is a class of all such X , where for any uniformly aiscre-
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te subspace T of X ,EEK , f : D—E there is fE€U(X,E) exten-

ding f. finally Ext*(K) will denote the class of all uniform spa-
ces X , where all bounded uniformly continuous mappings from arbitra-
ry subspaces of X ranging in some EE&€K have a bounded uniform
extension to the whole X.

We shall denote here & the class of all Banach spaces, $ the
class of all finite-dimensional Banach spaces. It was an open problem
for some time, whether Ext*( &) is the class of all uniform spaces,
or, equivalently, if a (closed) unit ball in each Banach space is an
injective uniform space. This problem was answered negatively by J.
Lindenstrauss in E.]_Tl , where there is constructed a Banach space not
having a uniformly injective unit ball. However many Banach spaces do
have uniformly injective unit balls. (For examples see Elo] ’ E.l] .)
We shuall denote here & the class of all Bunach spaces whose closed
balls are injective uniform spaces. (Equivalently the class of all E
such that Ext*({E}) are all uniform spaces.)

Our aim is to study what natural coreflective conditions allow ex-
tensions of uniformly continuous Banach valued mappings in the above
cases. At first we find a natural condition for a space to be in
Ext(8).

Recall that a space X 1is called metric-fine (resp.(complete met-
ric)-fine), if each uniformly continuous mapping from X 1into any
metric (resp. complete metric) space M remains uniformly continuous
into th . (See for example [3] ,[5] ,[:8].) We recall as least that
both classes are coreflective in uniform spaces and that (complete

metric)-fine spaces are exactly all subspaces of metric-fine spaces.

Theorem 4: If X 1is (complete metric)-fine, then XEExt( 4).

(Dugunaji ‘[2] )i

If M is a metric space, aCM a closed topological subspace,
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f : A—»E a continuous mapping into a locally convex topologi-

cal vector space, then f can be extended to a continuous f :
M—E . (In fact one can find an extension f such that £(M)
is contained in the convex hull of f(d) in E.)
Take X (complete metric)-fine, so we can find Y metric-fine con-
taining X as a subspace. Take a subspace a4 of X , fEU(A,E), whe-
re EE® . E is metrizable, hence there is a uniformly continuous
pseudometric d on Y , such that f 1is uniformly continuous from
(A,d) into E . According to the completeness of E , there is f?:
mﬂld—)-ﬂ: » the uniformly continuous extension to the closure.
Now using the Theorem of Dugundji, we obtain £ : (Y,d)—=E a conti-
nuous extension of f?,
The space Y 1is metric-fine, hence the identity mapping 1 : Y—
—(Y,d) remains uniformly continuous into tf(_Y,d) and simultane-

ously ?EU(tf(Y,d),E). Therefore fEU(Y,E) and extends f, £|X is

the desired uniformly continuous extension of f to the space X .

zability of the space E.

b) Theorem 4 gives a coreflective subclass of Ext(#&). It
is not known to me, whether it is the largest one, or
whether the largest coreflection contained in Ext(4)
exists.

The discussion of the case Extd is simpler. It is proved in [j]
that H(w)—tf is the largest coreflective subclass contained in

Extd( #). We shall prove that even:

Proposition 2: The class H(w)-t, is contained in Ext (#8).

According to condition (2) in Theorem O there ia X€ ii(l))-t.r . Take

arbitrary f€U(T,E), where EE€ 8 ., Because of the injectivity of
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the space H(T) we can find g€U(X,H(D)) such that for any x€D
there is g(x) = <x,1> . We have g€U(X,t.H(D)), tH(D) is in
Ext(8®) (Theorem 4), hence there is hE(tfH(D),E) such that
h(<x,1>) = f(x) for each x&TI. The mapping hg 1is the desired

uniformly continuous extension of f.

the result, that H(w )-—tf is the largest coreflective
subclass in both Extd( A), Extd( ).

b) Theorem 4 together with the appendix in the Dugundji theo-
rem mentioned in the proof gives the result that complete
metric-fine spuces are contained in both Ext( 4) and
Ext*( 8); however we do not know anything about the lar-
gest coreflective subclasses there.

c) Theorem O contains the result that H(w )=ty is the lar-
gest coreflective subclass contained in Ext(%).

The only nontrivial case is the case Ext(# ) now. The best re-

sult we are able to prove about this important case is the following:

Theorem 5: The class HerMod is contained in Ext($¥).

Proof: We use the property (5) of Theorem 3. Take & space E. We de-
note again B{r), for a positive real number r , the closed ball in
E centreéd in O with radius r, 3(0) = @. Take arbitrary X€ HerMod,
Y its uniform subspace, £f€U(Y,E).
ror each natural n we put

¥ = £ stm) ~8m-17] .

S { . . . .
The family 'anin even} is unifiormly discrete in Y. For each n

n
family {supp f;;n even} is unifermly discrete in X. This is
+

even we find fI’lE U(X,E) beunded such that fr’I;Yn = flY and the

le to find, because cach B(n) 1is an injedtive uniform space. This

implies that the mapping £’ =Z{fr’1;n even} is uniformly- continuous '

S —



— 499 _

hence the mapping g = f - f’II is uniformly continuous from Y in-
t0 E. The mapping g can be written as Ezj{gn;n odd} , where

supp ganYn for all n odd.

Now we choose the family {hn;n odd} . hnE U(X,E) bounded such that
the family {supp hn;n odd} is uniformly discrete and for each
©dd n there is hnlYn = 3h|Yn « The mapping h =223{hn;n odd} is
@géin uniformly continuous, so f’+ h€U(X,E) and moreover for yEIn
theére is:

/,f(y) + 0 = f(y) for n even
£ (y) + h(y) =
Nf£r(y) + £(y) - £°(y) = £(y) for n odd .

This finishes the proof.

Rtmarks: a) Again we are not able to find some larger coreflective
subclass of Ext(¥ ), even if we restrict to mappings in-
to spaces of the type ‘Loo only. On the other hand we
do not know if it is not the largest one.

b) Theorems 3 and 5 show that if X 1is in the class HerMod,
the structure of uniformly equicontinuous point bounded
families on X has some very nice properties: It is clo-
sed under some special countable sums (condition (5) of
Theorem 3), we can extend them from arbitrary subspaces,
and othérs. These properties have good applications in the
theory of free uniform measures, but we shall not go into
details here.

c¢) Theorem 5 says more for spaces in ¥ than Theorem 4, be-
cause for instance in El.tﬂ it is shown that even the class
of all e-locally fine spaces is much larger then the class

of all (complete metric)-fine spaces.
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