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A survey of Dugundji Extension Theory

by

L.d. Lutzer

This is the third lecture which 1 presented in the spring of
1377 while a visitor to §SAV. This lecture is entirely independent
of the first two. In this lecture, R denotes the usual space of real
numbers.

Everyone knows the classical Tietze-Urysohn extension theorem:

A. Theorem: Let A be a elosed subspace of a normal space X and
suppose f : A—» R is a continuous bounded, real-valued
function. Then there is a continuous real-valued F :

X—R which extends f and has the same bounds as f .

If we let C™A) denote the set of all continuous, bounded, real-
-valued functions on 4 and define C™(X) analogously, then the

Axiom of Choiece yields the following reformulation of Theorem a:

A’. Theorem: Let A be a closed subspace of a normal space X. Then
there is a function 1 : C*(4) = C™(X) having the pro-
perty that if fe C¥®(4), then 9(f) extends f anc

has the same bounds as f.

It is well known that the sets C™A) ana C™X) have several natu-
ral structures, namely:
(1) vector space structure;
(2) topological structure (I will consider three topolo-
gies = the sup-norm topology, the compact-open topo-

logy, and the pointwise convergence topology);
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(3) partial order structure (where C*(a) and C*(X)

carry the pointwise partial ordering).

The fundamental problem of Duguncji Extension Theory is to determine
whether (and when) the function ‘Q in Theorem A’ can be forced to
respect one or more of these additional structures. (Hereafter, ‘1
will be callea an extender from C¥(a) to C*(X).) In recent years
the problem has been subdivided further: first, how can Theorem 4' wve
sharpened for arbitrary normal spaces (see Theorems B and D, below)
and second, what reasonable additional 3tructures on A or X yielc
well-behaved extenders (see Theorems H and I, below) ? The first half
of today?’s lecture will concentrate on what can and cannot be done in
arbitrary normal spaces and the second half will consider normal spa-
ces having additional structure.

First, consider vector space structure. One easily proves

Be Theorem: Let A be a closed subspace of & normal space X. Then

there is a linear extender ?’ : C¥(a) = C*¥(X).

Proof: Let B be a basis for the vector space C¥(a) and for each

A
f€ B choose an extension f& C*¥(X) of f . Lefine @(f) = f

and extend 4 linearly over c®(4a).

You will note that the linear extender ’Z of Theorem B is not
guaranteed to preserve bounds of functions (compare to Theorem 4').
Indeed, it is known that for some normal spaces (and even for some
compact Hausdorff spaces) linear extenders which preserve bounés can-
not exist. Perhaps the first such example was g'7&R by Arens [A] in
1952. Today there are more "modern" approacheé which vield & sharper
result (see Theorem G) but the Arens example has & particular aesthe-

tic value whien cother approachnes may lack,
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C. Example: There is a compact Hausdorff space X containing a clo-
sed subspace A such that no linear, bound-preserving
extender from C™A) to C®(X) can exist. Let D be &
discrete space having card(D) = Ui. Let A be the one-
-point compastification of D. Then (by the usual Tycho-
noff embedding technique) A can be embedded in the space

X =3 vl, the product of y copies of the unit cirele

S. If A denotes normalized one-dimensional Lebesgue

measure on S, then the Kolmogorov product theorem yields

a complcte measure /w on X whose domain includes all

open sets. (The only properties of Y 4 which I will use

are that /u/ is ‘a non-negative measure such that every
non-void open set has positive measure, and /a/(X) =1.)

Suppose there is a bound-preserving linear extender 'Z $

C*(A) - C*(X). Define an "integral®™ I on C*(4) by the

rule that
I(f) =j (£)a .
R VO

Because I is a non-negative linear functional on C*(A), the Riesz-
-representation theorem yields a non-negative finite Borel measure VY

on 4 such that if fe C*¥(A) then I(f) =ffdv q
A

For each d& Dc A, let jd be the characteristic function of
the set {d} , i.e., gd : A—{0,1} has £3(x) =1 if and only if

x = d. Each fd is continuous and

v({a} =;{5ddy = 1(g4) =3[‘z(;d)d/u/.

decause 1), preserves bounds n(j d)iO and n(jd)(d) = }d(d) = 1.
Since n(; g) e cr), ‘IL(;d) is positive on an open set so that
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f’,(; d)d >0, i.e., V({d})70 for each of the uncountably rmany
X

points d€ D. But that is impossible because Y(4) = 1. L.

I will have more to say about linear extenders later, but first
let me continue to talk about what happens in normal spaces w.ith no
additional structure. Consider the topological structurec of C*(Z%)
and C*(X). Can one always finc¢ continuous extenders, provided one does
not require linearity ? The answer depends entirzly upon which of the
three topologies the function spaces carry. Consider first the sup-
-norm topology, i.e., where C¥™(A) is metrized by defining

d(f,g) = sup{lf(a) - g(a)l\aeA}.

A recent result due to van Douwen, Przymusinski and myself [DLP] assert:

I'. Theorem: Let A be a closed subspace of the normal spsce X, and
let C¥*4) and C®™(X) carry the sup-norm topology. Then
there is a continuous extender 01: C*(a)— C*(X) such

that 'L(f) has the same bounds as does f .

One of the interesting things about Theorem D is that we have three
completely separate proofs of the theorem: one is analytic, another
depends on the topological theorem that the product of a metric spzce
and a compact space is normal, and the third is selection theoretic.
The first two are given in [DLP] and the third appears in [L,]; I will
outline the first and third today. Before presenting the proofs, let
me observe that if there is a continuous extender e : C¥(4)—C™(X)
then a continuous and bound-preserving extender 'fb can be defined by
4, (£)(x) = max {I(£), min {e()x); S(£)}]
where I(f) = inf{f(a)[aeﬁ} and S(f} = sup{f‘(a)f&e A} . Thus it

suffices to £ind a continuous extendar.
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First proof of Theorem D: Recall the Bartle-Graves Theorem [3G] :

If E and F are Banach spaces, and if R : E—F 1is a continuous
linear surjection, then there is a continuous function e : F—E
having e(f)e R'l{f} for each fe€ F. That theorem can be applied to
the 3anach spaces E = C*(X) and F = C™A4), where R : E—F is de-
fined by R(g) = g|lA for each ge&C®(X), to obtain the desired con-

tinuous extender.

Second proof of Theorem D: Recall Michael?s first selection theorem

[M.l] : Let Y be a paracompact space and let B be a Banach space.
For each ye&Y 1let E(y) be a nonempty, closed, convex subset of B
and suppose the association y—E(y) 1is lower semi-continuous (see
[lll] for definitions). Then there is a continuous function e : Y—»B
such that e(y)eE(y) for each ye& Y. To apply that theorem, let

Y = C*A4) and B8 = C™X). For each feX let E(f) = {FeC*™X)|F
extends f}. The Tietze-Urysohn theorem (Theorem A) shows that the
association f—E(f) is lower semicontinuous so that Michael’s theo-

rem yields the required continuous extender. [J .

If one wants to use topologies on C¥®(A) and C¥(X) other than
the sup-norm topology, the situation becomes much more complex, and
counter examples outnumber theorems. Consider the topology of point-
wise convergence on C¥(A). aAn analyst would describe it to you by
telling you which nets converge. For me it is more convenient to des-
cribe basic neighborhoods. Fix fe C¥*(4), a finite subset ScA and
a real number g > O. I define 0(£,5,& ) = {g¢C"'(A)] for each a&S,
|g(a) - f(a)l<£} , and the collection {O(t,S,g)l £>0 and Sca
is finite} is a system of basic neighborhoods of f in the topology
of pointwise-convergence. The space &) is topologized in an analo-

gous way.
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There is a single space, today called the Nichael line (asee [Mz]),
which is a rich source of counter_ examples in extension theory. The

Michael line M is obtained by retopologizing the set of real num-

bers, using the collection {UUV\U is open in R and V¢ P} as
the new topology, where R is the usual space of real numbers and
where P is the set of irrational numbers. Observe that the set Q
of rational numbers is a closed subspace of ¥ and that, as & sub-
space of M, Q inherits its usual topology. Examples involving ¥
usually involve Baire category arguments; our next example uses a ve-

ry simple argument of that sort.

E. Example: Equip both c*¥Q) and C™M) with the topology of point-
wise convergence. Then there is no continuous extender
from C™*a4) to C¥®X). For suppose such an extender 7
C*(A)—C*(X) exists. (We do not assume 7 is linear.)
Let GQ and GM denote the zero-functions on Q and ¥
respectively. Replacing the given extender 7, by the
function QL’ (£) = ol(f) - ol(GQ) if necessary, 1 may as-
sume that ol(OQ) =8y o

For each finite set Sc Q and each integer nal, consider the
set 0(eq,S,l/n) and define

R(S,n) = {xcR | if fe 0(8.,S,1/n) then In(f)(x)lé 1} .

Because 'll is continuous and has OL(GQ) = 8y,

R = U{R(S,n)‘ScQ is finite and nhl} .

That union is countable and R is a complete¢ me:iric space so that

for some S, and n the set ¢l (R(Ss,no)) contains an open in-

o ? B

: : 2 B Y=l c
terval (a,b). Choose & raticnal mumter ¢, € {(&,bi=-S, o Decause o,

is finite, there is & continuous bounded funciion g ¢ K—=R such
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that g(qo) = ¢ and g(x) = 0 for each xe So o Then
g€ 0(6q,So,l/no). Because q e (a,b) I may choose a sequence <x.>
from R(So,no) which converges (in the topology of R ) to Q,;
however, since points of Q have the same basic neighborhood system
in both R and M, <X > converges to q, 1in M. But then
< (@) (x)> —> M (g)(q,) since 17(8)e c*¥(M), even though
ML(g)(Xk)l< 1l for each k21 while lz(g)(qo) = g(qo) = 2. That

contradiction completes the proof.[] .

The non-existence of continuous extenders from C*(Q) to C*(M)
where both function 3paces carry the compact-open topology, is esta-
blished in [HLZ,]. Another method for showing that continuous exten-
ders cannot always be found relies on the next theorem, also appearin
in [ﬁLZz]; however the theorem is not particularly useful in studying

the space M.

F. Theorem: Suppose X 1is a Hausdorff k-space and that for each clo-
sed Ac X it is possible to find a continuous extender
”, C¥(A)—» C*(X), where both function spaces carry the

compact-open topology. Then X 1is collectionwise normal.

Recall that a space X 1is collectionwise normal if, corresponding

to any discrete collection (:) of closed subsets of X, there is &
disjoint collection {U(D)\De @} of open sets having Dc U(D) fo
each De @. The definition of k-space is given in [KJ]; if you aren’
familiar with it, replace “"k-space"™ by "locally compact space” or by
“first-countable space” in the statement of the theorem.

There is one final question which one could ask about extenders

in arbitrary normal spaces. We have seen that linear extenders, and

continuous extenders (with respect to the sup-norm topology), always
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exist, but that linear, bound-preserving extenders may fail to exist.
0f course, linear, boundé-preserving extenders would be very special
cases of linear ancé continuous extenders. (kecall that for a linear
transformation T : E—sF, where E and F are normec linear spaces,
continuity of T 1s equivalent 1o the assertion that the number
sup{l\T(x)l\ \er and lIxls l} exists and is finite, and that numoer

is called the operator norm of T.) Obviocusly, then, each bound-pre-

serving linear extender is & continuous linear transformation of ope-
rator norm 1 and an isometry. With these notions we are able to shar-
pen Arens’ Example C, above, by proving a theorem. In order to under-
stand the statement of the theorem, recall that for a space Y, a(Y)
is the least cardinality of a dense subset of Y while c¢(Y) is defi-
ned to be sup {card(@)l@ is a disjoint collection of open sub-
sets of Y} . The following theorem appears in [DLP] .

G Theorem: Suppose X 1is a completely regular space having a closed
subset 4 such that c¢(A)>d(X). Then there is no linear,
continuous extender from C¥*(4) to C¥*(X).

_P_Ii<>_f'= Suppose there is a linear, continuous extencer 'YL: c¥a)y—

— C*(X). Then there is a positive integer m such that if fe c*(a)

has [ £Y§ = sup {lf(a){\ae A} at most 1, then Il?t(f)l!é m.

Let @ be a disjoint collection of relatively open subsets of

A having carl((@)> d(X). For each Ve (® choose a(V)eV and &

continuous g, : 4—» {0,1] having gy(a(V)) =1 and gv[A-V] = {O} .

Define a set U, by U, = {xex‘ ‘Vl(gv) (x)> 1/2} . Bach U, 1is &

non-void open subset of X so that, because card({_tf..JIVG @})> a(x),

some point xoeX belongs to infinitely mceny 4istinct sets UV .

Choose V.,V in @ such that xoen{u;!‘:éié.?m} where

l, 2’..0,V2m

we have written U, for Uy . Let
i
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om
£ = 2 8y. - Because the sets are pairwise disjoint, | f\ = 1.
2 * 2m 2o
Hence, maUq(ON =UD] 4 ey )l & 2. 9lay )(x) > (20)(1/2) > m
i=l i=1 1

and that contradiction completes the proof. [J .

Note that in Example C, the closed subset a4 had c(4) = ari

while the compact Mausdorff space X had d(X) =

X = ,sN, the Jech-Stone compactification of the set N of natural

o Similarly, if

numbers, and if A = AN-N, then ¢(4) = c> k9, = d(X). (The original

study of extenders in /BN appears in [GS).)

I have spoken about what can and cannot be done in arbitrary nor
mal spaces long enough. Let me now turn to positive results which are
available if one looks at normal spaces with extra structure. You pro
bably think it odd that Dugundji’s name has not yet been mentioned in
a lecture on Dugundji Extension Theory, and I will now remedy that
omission. The next theorem is the bounded, real-valued case of a theo
rem which grew out of work by Borsuk, Kakutani, Dugundji, Arens and

Michael. It is the model for all extension theorems. (See [Du],[A],

C;)

H. Theorem: Suppose A 18 a closed subspace of a metrizable space X
Then there is a function OL : C*(A)—»C*(X) such that
(1) n is an extender;
(2) ‘q’ is linear;
(3) if f€C®(A) then the range of 'IL(f) is contained
in the convex hull of the range of f;

(4) 'L is continuous provided both function spaces carry

the sup-norm topology, the compact-open topology, or
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the topology of poiuntwise convergence.

The proof of Theorem H is far too delicate to present here; it uses,

in a cruciel way, arthur Stone'’s great theorem that each metric space
i8 paracompact. Speaking loosely, the idea in the proof is to set up

a "machine® which acts in exactly the same way on all members of C*(a).
In building this "machine", one considers only a special covering of
the space X-A, and a partition of unity subordinate to it. One does
not even mention a member of C®(A) until after the "machine" is comp-
lete. (Compare that with the usual proofs of the Tietze-Urysohn theo-
ren (K) in which each member f& C™(A) 1is used to build its own ex-
tension.)

Since Theorem H appeared in the early 1350’s there have been se-
veral attempts to generalize it by relaxing the hypothesis that X 1is
metrizable. The most successful generalization was given by Borges in D
[Bl] where Theorem H was proved for stratifiable spaces instead of

metric spaces. Borges defined a space X to be siratifiable if, cor-

responding to each open set U of X, there is a sequence <<Sn(U)>
of open sets satisfying:

(1) Sn(U)c cl(Sn(U))c U;

(2) U = y{s,W)|a21},

(3) if UcV are open sets then Sn(U)c Sn(V) for each nal.

It is not hard to see that each metric space is stratifiable, and it
is known that there are mathematically important spaces which are
stratifiable but not metrizable (e.g., arbitrary CW-complexes). Borges

generalized his theorem even further in [3,] .

There are other classes of spaces, perhaps best known for patho-

logical counterexamples, in which some version of Theorem H can be
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established. For example, consider the generalized ordered spaces,

-

where by a gzeneralized ordered space I mean any topological space

which can be topologically embedded in a linearly ordered topological

space (i.e., a linearly ordered set endowed with the usual order topo

logy). The following theorem is proved in [HLi) .

I. Theorem: Let A be a closed subspace of a generalized ordered spa
ce X. Then there is a linear extender 1 : C¥(Aa) —» C*(X)
having the property that for each fe C¥(A), the range
of m(f) is contained in the closed convex hull of the
range of f. In particular, Q/ is a linear extender with

operator norm 1.

The proof of Theorem I is too involved to present here, but the
idea is easily understood. For simplicity, consider the case where A
is a closed subset of a linearly ordered topological space X. As in |
the case of the real line, the set X~A 1is the union of a disjoint

family of order-convex sets, called convex components of X-A. Let I

be a convex component of X-A. If I has two end points each belong-
ing to A then we already know the value of each feC%(A) at these
end oints and our extension machine attempts to draw a straight line,
or some analogue therqupf, Joining the values of f at the end points
The hard case occurs when one or both ends of 1 are Dedekind cuts
in Y, and in that case we make use of Banach limits to choose values
for the extenssion of f over I. Once again, note that the extension
process is defined oy the spaces A ‘and X and only after our "ma-
chine" 1is constructed do we apply it to particular members of c*).
We have already seen one strange generalized ordered space, name-
ly the Michael line. A second well-known example is the Sorgenfrey li-

ne; see [13] for the general theory of such apaces.
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A seconc patnological class for which Theorem H is knowr to holg
is the class of retractifiable spaces. In his dissertation [I;], van
Douwen defined a space X to be retractifiable if and only if each
closed Ac€X 1s & retract of X, i.e., there is a continuous function
r : X— A such that r(a) = a for each ae A. It is obvicus how to
build an extension machine for such spaces: one defines 7/: c¥{a)y—
— Cc*(X) by 7 (f) = for. Retractifiable spaces must be ex-remely
pathological, e.g., in terms of connectedness: it is known thet & metil-
ric space is retractifiable if and only if it is strongly zero dimen-

sional.

Until recently there was an outstanding open question in Dugurnc-
Ji Extension Theory which motivated most of the research in the aresa.
After seeing Arens’ example (and its relatives), Michael observed that
none of the counteg_gxamples were perfect (= each closed set is G;),
and asked whether each perfect, normal space rust satisfy some versicon
of Theorem H. Ten years later, Borges reposed the question in [Bi],
asking whether each perfect, paracompact space satisfies Theorem H.
Finally, in 1968, after R.W. Heath proved that every stratifiable spa-
ce has a @ -discrete network, Michael asked whether each paracompact
space with a § -discrete network must satisfy Theorem H. (Recall that
& network for a space X is a collection (M) of closed sets such
that if xeU, where U 1is open, then some Ne@ has xe& Nc Us)
These problems were not solved until 1974, at which time Heath and 1
answered Michael’s original question in the negative and, independent-
ly, van Douwen administered the coup de grgce t¢ all three. Each solu-
tion was based on an answer to the following quezticn: Suppose that
for each closed A€X there is a linear, continudus extender from
c*a) to C*(X}; then what special properties must X have 7 Heath

and . proved ths i¥ one zan alwsys obiair extenders of operator
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norm « 2, then X must be hereditarily collectionwise normal [lej
and van Douwen [bl,Dz] sharpened that result to allow extenders of
operator norm < 3. Thus it follows that Bing’s Example H [Bi) is a
perfectly normal space for which Theorem H, above, cannot be proved.
Van Douwen [D2] went on to describe a perfect, paracompact space with
a countable network which does not admit coantinuous extenders of any
operator norm. His space is constructed inductively. The first step
in the construction is easy to describe and important in its own right,
The points of the space X consist of all points on the x-axis in
Rz, together with all points (x,y) in RZ having both coordinates
rational and positive. Any point of the form (m/n,l1/n) has its usu-
al Euclidean neighborhoods. Any point (x,y), with y> O, which is
not of that form is isolated. Points on the x-axis have "butterfly-
-shaped® neighborhoods. More precisely, given (a,0)&e X and n21,
the set

Bn,(8,0)) = {(x,y)€X|la-x| < £ ana L <2}y{(s,0],

is a basic neighborhood of (&a,0). With that topology, the set A of
all non-isolated points of X 1is & closed subspace of X and there
is no linear extender it: C*(A)—> C*(X) of operator norm < 3, even
though X 1is paracompact, perfect, and has a countable networke. The
non-existence of such an extender follows from a Baire Category argu-

ment plus the following result of van Douwen [Dl,Dzj .

Je. Theorem: Suppose that A 1is a closed subset of a 8space (X,CD),
and let (:)A denote the relative topology on 4. If
there is a linear extender from C*(i) to C®™X) having
operator norm < 3, then there is a function K : @A—*
—>@ such that
1) if Ue @, then U= k(W4
2) if U and V are disjoint members of (E)A then
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k(U)NA (V) = ¢ .

So far today I have talked about when and how cne can make ex-
tenders respect the linear and topological structures of function spa-
cess In the few remaining minutes, let me talk about partial orderings.
In 1970, Zenor introduced the term "monotone normality" to describe
a notion appearing in [3,] . In a space X, let (® = {(4,U)|4 is
closed, U is open and Ac U} . Partially order (®) by defining
(A1,01)<(A2,U2) if Ajc4, and UjcU, . It is well-known that X
is normal if and only if for each (A4,U)e @ there is an open set
G with Ac Gecel(G)c U. A space (X,@) is monotonically normal if
there is a function G : @—»@ satisfying:

(1) if (4,U)e (B) then AcG(A,U)ccl(G(4,U))e U;

(2) it (a;,U;)@ ® with (4),U;)<(4,,U,) then

G(AI,UI)CG(Az,Uz) .

Monotonically normal spaces satiafy a monotonic extension theorem

[HLZI:] , namely,

K. Theorem: Let A be a closed subspace of a monotonically normal
space X. Then there is an extender 4 : C*(a)—> C¥*(X)
having the property that if two members f and g of
C*(i) satisfy f&g, then N(£) & N (g) in C®(X).

This monotonic extension property is a very strong one and not all nor-
mal spaces have the property as may be sgeen from the next theorem,

due indeJendently to van Douwen and myself. Om2 proof appears in

{(BL, Thm 4.6.7] .

Le Theorem: Suppese that for esch closed subspace 4 of X there is
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an extender '1: c*(a)— C*(X) such that if f&£g in
c*(4a) then 1,(f) £ 9(g) in c*(X). Then X is colle

tionwise normal.

In our paper [HLZi] we had asked whether the existence of monotonic
extenders characterized monotonically normal spaces. Van Douwen ans-
wered that question in the negative by constructing a countable regu

lar retractifiable space which is not monotonically normal [Dlj.

I would like to take iﬁzg\éhance to add a more philosophical pa
ragraph at the end of my lecture. There has been a movement in Ameri
can topology during the past five years whose motivation may be sum-
med up as follows. If a topological space (X,(:)) carries intrinsi
atructures (such as the various structures on C¥(X), or the contain
ment partial ordering of (:), or the partial ordering of the colleec
tion c> in the definition of monotone normality), then it is of
interest to determine what happens if usual topological notions are
tied to this intrinsic structure, In addition to the ideas mentioned
in this lecture, you can get a deeper idea of what we have in mind b
looking at Zenor’s papers [Zi],[sz and their sequel, written by
Gruenhage (G]. (See also [BL].)

Let me close this lecture by listing a few open questions asso-

ciated with Dugundji Extension Theory.

(1) Dugundji Extension Theory and Moore spaces.[HL,]. I refer you to

the lectures orf Mike Reed for the definition of a Mocore space.
The general question in this area asks whether a Moore space X
must be metrizable provided that for each closed ACX there is

a continuous linear extender QL: c*a)— c*(X), where both
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function spaces carry sup-norm topology. Certain things are known

about this question.

a) If one can always obtain linear extenders of operator norm < 3
then van Douwen’s theorem [D;_,] forces X to be collectionwise
normal and hence metrizable.

b) 1If we consider only those Moore spaces X which satisfy the
Countable Chain Condition (i.e., which do not contain any un-
countable pairwise disjoint collection of open sets), then X
is metrizable if and only if for each closed Ac X, some con-
tinuous linear extender from C¥(A) to C¥®(X) exists.

¢) For any Moore space X, if continuous linear extenders (with-
out any norm restriction) can be found for each closed AcX,
then X is normal and metacompact. That makes me wonder if a
consistency result might be hiding here. Indeed, it will be
fruitful to determine whether or not continuous linear extenders
can be found in Heath?s "V-space" [H), which may be describec
as follows. Assume Martin’s Axiom plus the negation of the Con-
tinuum Hypothesis. Fix any set Sc R having card(S) = w-l;
then S 1is a Q-set. The points of Heath’s space X are all
points (x,y) e R2 having y»>» O together with all points
(x,0) where xS. Any point (x,y) with y> O 1is isolated,
and basic neighborhoods of a point (a,0), for a€S, are sets
of the form

B(a,n) = {(a,O)} U{(x,y)eX\y = x-a and |x-a| < %} .

It is known that X 1is a normal, metacompact Moore space, but
whether X admits enough continuous linear extenders is un-

known.

(2) 1s the Dugundji Extension property hereditary ? More precisely,

suppese & space X is known to satisfy the conclusions of either



(3)

(]

(5,)
[3,)
[30)

(1)
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Theorem H or Theorem I. Must every subspace of X s8atisfy the
same conclusions ? If not, for which subspaces does the conclusior

hold. (I seem to recall that the existence of norm 1 linear exten.

ders is inherited by open qr -subspaces.)

Uniformly continuous extenders. We saw in Theorem D that if A4
is any closed subspace of a normal space X, them there is a con-
tinuous (not necessarily linear) extender 2: c*a)—c*(X),
both function spaces being topologized by the sup-norm metric.
This third question asks whether 2' can be taken to be uniformly
continuous with respect to the sup-metric. This is intimately re-
lated to another question: can one always obtain an extender %
which has a Lipschitz const@8nt. We know [DLP] that this Lipschitz
constant cannot be <2 (in general) but we don’t know about cons-

tants belonging to [2,+oe).
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