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á survey of D�gundJi Extension Theory 

by 

L.J� Lutzer

This is the third lecture whích _l presented in the spring of 

1977 while a visitor to �SAV. This lecture is entirely independent 

of the f'irst two. In this lecture, R denotes the usual space of real 

numbers. 

Everyone knows the classical Tietze-Urysohn extension theorem: 

A. Theorem: Let A be a closed subspace of a normal space X and

suppose f: A-+� is a continuous bounded, real-valued 

function. Then there is a continuous real-valued F :  

X---+ 1t which extends f and ha.s the same bounds as f o 

lf we let c•(A) denote· the set of all continuous, bounded, real­

-valued functions on A -&nd define C*(X) analogously, then the 

Axiom of Choice yielda the f'ollowíng reformulation O"f Theorem A: 

A'. Theorem: Let A be a closed subspace of' a normal space X. Then 

t.here is a function l : c*(A) -.c•cx) having the pro­

perty that if fa C*(A), t.hen \(f) extends f and 

has the same bounds as f. 

It is well known that the sets C"'tA) and c*(X) have several natu­

rel structures, namely: 

(1) vector space structure;

(2) topological structure (I will consider three topolo­

gies - the sup-norm topology, the compact-open topo­

logy, and the pointwise convergence topology); 
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(3) partial order structure (where c•(A} and C*(X)·

carry the pointwise partial ordering}.

The .ťun.damental problem _Óf Dugunaji Extension Theery is to deteriiine 

w.heth'er {and when) the.f'unction "l in Theorem �, can be t'orceci to 

respect one or more of these additional structures. (Hereafter, 't

will be called an extender from C*(A.) · to C (X).} In recen years 

the problem has been subdivided further: first, how can Theorem A' oe 

sharpened for arbitrary no�l spaces (see Theorems Band D, below) 

and sec�md, what re·asoriable additional structures on A or X yielo 

well-behaved .extendera (see Theorems H and I, below) ? The. first half 

of today's lecture wj.ll concentrate on what can and cannot be done in 

arbitrary normal spaces and the second half will consider normal spa­

cea having additional atructure. 

First, consider vector space structure. One easily proves 

B. Theerem: Let A be a closed subspace of a normal space X. Then

there is a linear extender 'l, : c•(A)--+ C*(X)

Proof: Let B be a basis for the vector space c•(A) and for each 

�E . .B choose an extension ta. c -"(X) of f • Deí�ine 1, (f') = ; 

and extend t linearly over c•(A).

You will note that the linear extender "L of Theorem Bis not 

gLl&rante-ed to preserve bounds of functions ( compare to ·Theorem A•).

Ind·eed, i t is Jcnown that for some normal spaces (and even for some 

compact Hausdorff spaces) linear extenders which preserve bounds can­

not exiat. Perhapa the first such example as g.7e� by Arens (A) in 

19?2• T·oday there are. mo:re "modern" approache �hich yield a sharper 

result (see Theerem G) but the Arens example has a particular aesthe-· 

tic value which other approaches �uy lac. 



c. Example: There is a eompact Hauadori-f' spac·e X containin:g a clo­

sed subspacé A such that no linear, bo.und-preserving 

extender :from C "'CA) to C*CX) can exist. Let D be a 

discreté space having card('D)" = "í_ o Let A be the on-e­

-point compa�tification of D. Then (by the usuai Tycho­

nof'f embedding technique) A can be embedded in the s.pece 

X• S 1, the product of •-i_ copies of the unit eircle

S. If A denotes normalized one-dimensional Lebesgue 

measure on s, then the �olmogorov product theorem yields 

a co.mplete measure /" on X whose domain includea all 

open sets. (The only properties of' /" which I will use

.are that /" is ·a non-negative measure such that every

non-void open set has positive measure, and j'ÁX) = 1.)

Suppose there is a bound-preserving linear extender "L
C*(A)-+C*(X). Define an "integral" I on c*(A) by the 

rule that 

I(f') = J \ (f')dl" •
X 

Because I is a non-negative linear functional on C*(A), the Riesz­

-representation theorem yields a non-negative finite Borel measure. y 

on .A such that if' fe c*(A) then I(f') = jta'I . 

For each da De A, let .jd be the characteristic function of

the set {dj, i.e., jd : A-...{0,1} has jd(x) = 1 if and only if

x = d. Each Jd 
is continuous and

oecause· 

Since. 

�({d}) =] j dd}I s I(j d) = Ji<; d)á� •
�A X 

tz, preserves bounds "l'ja>•o and 11,<
J

d)(d) = JdCd)

'l, <J d) 4i c*(X), 'J,C j d) 'i.s posi tiVe-on ari -open set s.o that

= 1·. 



t l, Cj d) dt' > O, i•••, li C{ d }) ? O for each of the uncount abl.y 10any

pointa de D • .dut that is impoesibJ. e because Ý(A) = 1. U•

I will have more to say about linear extenders later, but first 

let me continue to talk about what happens in normal spaces w�th no 

addi tional structu.re. Consider the topological structure o_f C"' (;.) 

and C .,. (X). Can one always find continuous extenders, provided one does 

not require linearity? The answer dependa entirely upon which of the

three topologies the function spaces carry. Consider first tht sup­

-norm topology, i.e., where c•(A) is metrized by defining 

d ( f', g ) = sup {l f ( a ) - g ( a ) I \ a E A } •

A recent resul t due to van Douwen, Przymusinski and myself (DLP] assertr 

�- Theerem: Let A be a closed subspace of the normal space X, ano 

let C*lA) and C�(X) carry the sup-norm topology. Then 

there is a continuous extender 11/, : c•(A)-+ c*<X) such 

that "l,(f') has the same bounds as does f. 

One of' the interestíng things about Theerem D is thst we have three 

completely separate proofs of the theorem: one is analytic, another 

depends on the topological theorem that the product of a metrie SJ:!iCe 

and a compact space is normal, and the third is aelection theoretic. 

The first two are given in [DLPJ and the third appears in CL
2
J; I will 

outline the first and third today. defore presenting the proofs, let 

me observe that if there is a continuous extcnder e : c +(A) -+C*(X) 

then a continuou� and oound-preserving extenoer \ �9n be defined by 

'\(f)(x) = max {I(f}, min {e(f)(x), S(.ť)}} 

where I{f) = inf{f(a)\aeA} and S(.f) = eup{f(a)iae. .b) • 1'hus it 

suffices to find a continuoue extenáer,
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First proof of Theorem D: Recall the Bartle-Graves Theor·em [SG] : 

I:f E and F are Banach spaces,. anó if R : E-+F is a continuou·s 

· linear surjection, then there is a continuous fun.ction e : ..&'�E

having e(f)s R-1{f} for each fE F. That theorem can be. applied to

the da."lach spaces E = c•cx) and F = c•(A), where R : E-F is de­

fined by R(g) = glA for each g• c•(x), to obtain the desired con­

tinuous extender.

Second proof of Theerem D: Recall Michael's first selection theorem

(M:i] : Let Y be a paracompact space and let B be a Banach space.

For each y a Y let E (y) be a nonempty, closed, convex subset of B

and suppose the association y-+ E(y) is lower semi-eontinuou.s (see

[Ki,) for def'ini tions). Then there is a continuous function e

such that e(y)Ci E(y) for each ya Y. To apply that theorem, let

Y = C*(A) and d = C*{X) •. 1''or each f'e X let E(:ť) = {Fa c•cx) \ F

extends f J. The Tietze-Urysohn theorem (Theorem A) shows that the

association f'-.E(f') is lower semicontinuous so that Michael's theo­

rem yielós the required continuous extender. O.

If one wants to use topologies on C*(A) and C*(X) other than 

the sup�norm topology, the situation becomes much more complex, and 

counter examples outnumber theorems. Consider the topology of point­

wise convergence on ..C*(A). An analyst would de.scribe it to you by 

telling you which nets converge. For me it is more convenient to des­

cribe basic neighborhoods. Fix fa C*(A), a t'inite subset s.c: A and 

a real number t-> o. I def'ine O(f',S, t.) = {g,c•·cA) J for each a,s,

\ g(a) - f (a) I< f.} , and the collec t.ion {ocr, s, f;. ) l I.> o and S c..A 

is finite} is a system ot basic neighborhoods o-f' f in the topolo,gy 

of' pointwise-conver_gence. The space d'tx) is topologized in an analo­

gous way.



There is a single space, today called the .Dlichael line (see [�]), 

which is a rich aource of counte�examples in extension theory. The 

Michael line li is obtained by retopologizing the set of real num­

bers, using the collection {uuv\u is open in i. and Ve P} a.s 

the new topology, where l is the usual S?}Ce ot real numbers and 

where P is the s.et ot irrational numbers. Observe that the set Q

oť rational numb.ers is a closed subspace of M and that, as a sub­

space of M, Q inherits its usual topology. Examples involving M 

usually involve Baire category arguments; our next example uses a ve­

ry simple argument of that aort. 

E. Example: Equip both C 4(Q) and c*(M) with the topology of point-

wise convergence. Then there is no continuous extender 

from c"CA) to c*{X). For suppose such an extender "l.:

c*(A)�c"(X) exists. (We do not assume 11, is linear.) 

Let 8Q and eM denote the zero-functions on Q and M

respectively. Replacing the gi ven extender 't, by the 

function "l,'{f) = "'t{f) - 11.<eQ) if' necessary, I may as­

sume that 't {0Q) = 8
.M 

• 

For each finite set Se Q and each integer n�l, consider the 

set O(QQ,S,1/n) and define

R(S,n) = { x·c'l. I if fE. 0{8Q,S,l/n) then 111, (f') (x>l "'- l} •

Because 'l, is continuous and has "l,(8Q) = 8M,

1t = U{RCS,n)\sc Q is !inite and n�l} • 

That union is countable and R is a complete me��ic space so that 

for some so and no the set 

terval (a,b). Choose a rational 

is :finite, there is a cmtinuo· s

cl � (R(S
0

,n
0

))

nw:ťt.er 

bc.,i;.,,"1ded 
qo e (as

f��ction 

contains an open in-

) C: 

... o .. aecause So

í!, : M-+'R such 
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that g(q
0

) = 2 and g(x) = O for each xe S
0 

• Then 

ge O(eQ,S
0

,l/n
0

). Because 4c� (a,b) I may choose a sequence <xk>

from R(S
0

,n
0

) which converges (in the topology of R) to q
0

;

however, since pointa of Q have the same basic neighborhood system 

in both l and M, < � >

<:: "l, (g) (xk)>--. "l.,(g) (qo)
1 'l,(g)(�)\ < 1 :for each 

converges to q
0 

in M. But then 

since "I, (g)& C�(M), even though 

k=kl while 1},(g)(q
0

) = g(q
0

) = 2.

contradiction completes the proof. O .

That 

The non-existence of continuous extenders from c•(Q) to C�(M) 

where both function apaces carry the compact-open topology, is esta­

blished in (HLZ
2
J. Another method for showing that continuous exten­

ders cannot always be found relies on the next theorem, also appearin 

in [HLZ
2
]; however the theorem is not particularly useful in studying 

the space M. 

F. Theerem: Suppose X is a Hausdorff k-spacé and that for each clo­

sed AcX it is possible to find a continuous extender 

't : clf' (A)-+ c*(X), where both function spaces carry the 

compact-open topology. Then X is collectionwise normal. 

Recall that a space X is collectionwise normal if, corresponding 

to any discrete collection @ of closed subsets of X, there is a 

disjoint collection {U(D) \DE@} of open sets having De: U(D) fo 

each De@. The definition of k-space is given in CK); if you aren' 

familiar with it, replace "k-space" by "locally compact space• orby 

"first-countable space• in the statement of the theorem. 

There is one final question which one could ask about extenders 

in arbitrary normal spaces. We have seen that linear extenders, and 

continuous extenders (with reapect to the sup-norm topology),always
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exist, but that linear, bound-preserving extenótrs m&.y fail to exis�. 

Of course, linea.r, bound-preserving extenders would be very special 

ca.ses of linear and continuous extenders. {Hecall that for a linear 

transformation T E-.F, where E and F are normeé linear spaces, � 

continuity cf T is equivalent �o �he assertion that the number 

sup{"T{x)U \xEE and 11xns1} exists �nd is finite, and that numoer 

is called the operator norm of To) Obviously, then, each bound-pre­

serving linear extender is a continuous linear transformation of ope­

rator norm 1 and an isometry. �ith these notions we are able to shar­

pen Arens' Example c, above, by proving a theorem. In order to ur.der­

stand the statement of the theorem, recall that for a space Y, o(Y) 

is the least cardinality of a dense subset of y while c{Y) is defi-

ned to be sup { card (@ ) \ ® is a disjoint collection cf open sub-

seta oť Y} • The following theorem appears in (DLP] • 

G. Theorem: Suppose X is a completely regular space having a closed

subset A such that c{A} > d(X). Then there is no linear, 

continuous extender rrom C�(A) to C�(X). 

Proof: Suppose there is a linear, continuous extender '?, : C.,(A)�

-+ c•(X). Then there is a positive integer m such that if f fá C�{A) 

has uf ij = sup {lf(aH \ ae A} at most 1, then u 'l, (f) tt * m. 

Let @ be a disjoint collection of relatively open subsets of 

A. having carJ( (j)) > d{X). For each V6 (i) choose a(V)E V and &

continuous gv: A-+(0,1] having gv(a(V)) = l and gv[A-V] ={o}.

Define a aet Uv by Uv = {xe X\ 1l. (gv) (x}.,. 1/2} • Each Uv is &

non-void open suhset of X so that, because ca.r,H{UvlVe. ©}>> d(X),

some poin x
0 

EX belongs to infini tely m�.ny dist ·nct sets Uv •

Chaose Vl'V2, ••• ,v2m in © such that :.<
0

en{u.p�if!!2m} where 

w·e have wri t ten U. fo:r Uv. • Let
1 

1 
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2m 

... - � g .. - � v .• 
i:l 1 

Because the seta are pail'iri•e dia.joint., l t'I = 1.

2m 2m 
Hence, m�U'LCt)i •II:! 1, <sv.>11 • E 4t<&y_>Cx

0
>> (2m)(l/2) >

i=l 1 i=l 1 .
m • 

and that contradiction completea the proot. ·□ .

Note that in Example C, the closed subset .d. had c(A) = "i 
while the compact Hausdor.tf' apace X had d(X) = "'ó .  Similarly, il 

X = fN, the Čech-Stone compactif'ication ot the set N ot natural 

numbers, and if A = fli-N, then c(A) = c > ,V,
0 

= d(X). (The original 

study of extenders in �• appears in [GS).) 

I have spoken about what can and cannot be done in arbitrary nor 

mal spaces long enough. Let me no• turn to posiiive results which are 

available if one looks at normal spaces with extra structure. You pro• 

bably think it odd that Dugundji's name has not yet been mentioned in 

a lecture on Dugundji Extension Theery, and I will now remedy that 

omission. The next theorem is the bounded, real-valued case of a theo• 

rem which grew out oť work by Borsuk, Kakutani, Dugundji, Arens and 

Michael. It is the model for all extension theorems. (See tDu),(A],

(M3J) 

H. Theorem: Suppose A is a closed subspace or a metrizable space X

Then there is a function "I,: c*(A)-+C*(X) such t.hat 

(l) 11, is an extender;

(2) t is linear;

(3) if f 4." c•(A) then the range or tt,<t> is contained

in the convex hull of the range of t;

(4) .,, is continuous provided both function s.paces ca.rry

the sup-norm topology, the compact-open topology, or
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the topology of pointwise convergence. 

The_ proo:f of Theerem H is far too delicate to present here; it uses, 

in a crucial way, J..rthur Stone•s great theorem that each metrie space 

is para..compact. Sp.eaking loosely, the idea in the proof is to set up 

a "machine" wh.ic-h acts in exac-tly the same way on all members of C "° {A). 

In building t.his "machine", one considers only a special covering of 

the space I-A, and a partition of unity subordinate to it. One does 

not even m..enti�n _a member of c•{A) until after the "machine" is comp­

lete. (Compare that with the usual proofs of the Tietze-Urysohn theo­

rem (KJ in w-hich each member f c C "° (A) is used to build i ts own ex­

tension.) 

Since T heorem H appeared in the early 1950's there have been se­

veral attempts to generalize it by relaxing the hypothesis that X is 

metrizable. '.I'he most successful genere.lization was given by Borges in.) 

[B1] where Theorem H was proved for atratifiable spaces instead of

metrie spaces. 13orges defined a space X to be at.rati:ťiable if, cor­

responding to each open set U of X, there is a sequence <S
0

{U)> 

of open sets satisfying: 

(1) S
0

{U)ccl(Sn(U))cU;

( 2) U = U { Sn (U) l n � l} ,

(J) if Uc V are open seta then S
0

(U)c Sn(V) for each n�l.

It is not hard to see that each metrie space is stra"tifiable�. ano i t 

is known t.hat there are mathematically im-portant spaces which are 

strati�ia.bLe but not metrizable ( e. g., arbi trary CW-complexes) • Bor�es 

gen,eralized his theorem even furt.her in (B2] •

There are other class-es o:f' spaces, perhaps best known for patho­

l�gical counterexamplea, in which eome version of Theerem H can be 
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eetablished. For_ example, consider the gener alized ordered spaces, 

where by a generalized ordered space I mean any topological space 

which can be topologically embedded in a linearly ordered topological 

.space (i.e., a linearly ordered set endowed with the u�ual order topo, 

logy). The following theorem is proved in (H½_) • 

I. Theorem: Let A be a closed subspace of a generalized ordered spa,

ce X. Then there is a linear extender 

having the property that for eac.h :f c C *(A), the range 

.,, ,.,,., 
"\� ) 

is contained in the closed convex hull of the 

range of f. In particular, i, is a linear extender with 

operator norm 1. 

The proof' oť Theorem I is too involved to present here, but the 

idea is easily understood. For simplicity, consider the case where A 

is a closed subset of a linearly ordered topological space X. As in 

the case of- the real line, the set X-A is the union of a disjoint 

family of order-convex seta, called convex components of X-A. Let I 

be a convex component of X-A. If I has two end points each belong­

ing to A then we already know the value of each f E. c•tA.) at these 

end ;oints and our extension machine attempts to draw a straight line, 

or some analogue there of, joining the valuee of f at the end points 
-

The hard case occurs when one or both ends of I are Dedekind cuts 

in �, and in that case we make use of Banach limits to chaose values 

for the extenssion of f over I. Once again, note that the extension 

process is defined oy the spaces A and X and only after our "ma­

chine" is constructed do we apply it to particular members of c•(A). 

We have already_seen one strange generalized ordered space, name­

ly the Michael line. A second well-known example is the SC1rgenfrey li·· 

ne; see [½_] for the general theory of such s.pac.es • 
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A seconó pathological class for which Theorem H is known to hold 

is the class of retractifiable spáces. In his dissertation [D1), van

Douwen defined a space X to be retractifiable if an_d only -if each 

closed ACX is a retract of X, i.e., there is a continuous furiction 

r : X-+ A such that r (a) = a for ea.ch a-. A. It is obvious how to 

build an extension machine for such spaces: one defines 

__.c�(X) by 'l,(f) = for. Retractifiable spaces must be extremely 

pathological, e.g., in terms of connectedness: it is known that a met­

rie space is retructifiable if and only if it is strongly zero cimen­

sional. 

Until recently there was an outstanding open que�tion in Dugunč­

ji Extension 'l'heory which motivated most of the research in the ares. 

After seeing Arens• example (and its relatives), Michael observed that 

none of the countez:_,examples were perfect {= each closed set is Gd), 

and asked whether each perfect, normal space must satisfy some version 

of Theerem H. Ten years later, Borges reposed the question in [B1],

asking whether each perfect, paracompact space satisfies Theorem H. 

Finally, in 1968, after R.W. Heath proved that every stratifiable spa­

ee has a 6'-discrete network, Michael aaked whether· each paracompact 

space with a tf-discrete network must satisfy Theerem H. (Recall that 

a network for a space X is a collection @ of closed sets such 

that if x& u, where U is ppen, then some NE @ has XE Ne. u.) 

These problems were not solved until 1974, at which time Heath and 1 

answered Michael's original question in the negative and p independent-· 
• 

A

ly, van Douwen administered the coup de grace to all three. Each solu-

tion was based on an answer to the following q�est�on: Suppose that 

for each closed A c X there is a linear 1 continuous extender from 

C*(A) to c*oo; then what special pr-0perties must X have ? Heath 

anc ·_ provad t.hs if one can alnays ottair extenders of operator 
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norm � 2 1 then X must be hereditarily collec�ionwiae normal [HL2J

and van Douwen t'.»i,D
2
J sharpened that result to allow extenders o�

operator norm < J. Thus it follows that Bing's Exam�le li (Bi) is a 

perťectly normal space for which Theorem H, ab.ove, cannot be proved. 

Van Douwen [n
2
] went on to describe a perfect, paracompaet space„ wi th 

a countable network which does not admit continua.us enenóers of any 

operator norm. His space is constructed inductively. 'l'he first step 

in the conatruction is easy to describe and important in its own ri.ght, 

The points of the space X consist of all pointa on the x-axis in 

l 2, together with all points {x,y) in Jt 2 having both coordinates

rational and positive. Any point of the form (m/n,1/n) has its usu­

al Euclidean neighborhoods. Any point {x,y), with y>O, which is

not of that form is isolated. Pointa on the x-axis have "butterf'ly­

-shapeď' neighborhoods. More precisely, give-n (a.�0)& X and n�l,

the set

B{n,(a,O)) = {<x,y)ex\\a-xl< ½ and �<.�} u{<a,O)j, 

is a basic neighborhood of (a,O). With that topology, the set A of 

all non-isolated points of X is a closed su'Dsp:ace of X anó tbere 

is no linear extender "l: c•cA)__. C*(X) of' operator norm < 3, even 

though X is paracompact, perfect, and has a count.able network. The 

non-existence of such an extender follows from a Baire Category argu­

ment plus the following result of van Douwen [Di,DiJ • 

J. 'rheorem: Suppose that A is a closed subset of a apace (.x, ®),

and let © A denote t.he relative topology on A. If

there is a linear extender from C*(A) to C *(X) having 

operator norm < 3, then there is a function 

--+ G) such that 

1) if UE@A then U= l((U)(\A
o r.ň'\2) if' u and V are disjoint members of '-' A then
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k. (U) n K(V) =, .

So far today I have talked about when and how one can make ex­

tenders respect the linear and topological structures of function spa­

ces. In the few remaining minutes, let me talk about partial orderings. 

In 1970, Zenor introduced the term •monotone normality• to describe 

a notion appearing in [o1J. In a space X, let

closed, U is open and A c U} • Partially order 

® = {(A,U)IA is 

® by defining 

(Ai_, Ul) < (A2, U2) if' Ai C A2 and u1 c u
2 

• It is well-known that X

is normal if and only if for each (A,U)&@ there is an open set 

G wi th Ac G cel (G)c u. A space (X, G)) is monotonically normal if 

there is a f'unction G : @--- © satisfying: 

(1) if' (A,U)e (É) then AcG(A,U)c cl(G(A,U))c U;

(2) if' (Ai' ui )� @ wi th (Ai_, ul)< (A2, U2> then

G(Ai_,U1)cGCA2,u2) •

Monotonically normal spaces satisfy a monotonie extension theorem 

[HLZi] , namely, 

X. Theorem: Let A be a closed subspace of a monotonically normal

space X. Then there is an extender 11,: C*(.ii)...,.C*(X) 

having the property that if two members f and g of 

c*(A) satisf'y f'tá g, then "I, Cf) " \Cg) in c• (x). 

This monotonie extension property is a vecy strong one and not all nor, 

mal spaces have the property as may be seen f'rom the next theorem, 

due indeJendently to van Douwen and myself� On� proof appeara in 

[BL, Thm 4.6.7) • 

L„ Theorem: Suppose that f-or esch closed subspace A of X there is 
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an extender 'I, : c•(A)-+ c•cx} such that i:f :f4. g in 

c*(A) then i<:r), "i(g} in c*(X). Then X is colle 

tionwise normal. 

In our paper (HLZi_) we had asked whether the existence o:f monotonie 

extenders characterized monotonically normal spaees. Van Douwen ans­

wered that question in the negative by constructing a countable. regu 

lar retracti:f'iable space which is not monotonically normal [D1].

---·----
I would like to take this chance to add a more philosophical pa 

ragraph at the end o:f my lecture. There has been a movement in Ameri 

can topology during the past :five years whose mot1vation may be sum­

med up as follows. I:f a topological space (X,@) carries intrinai 

structures (such as the various structures on c•cx), or the contain

ment partial ordering o:f G), or the partial ordering of the collec 

tion ® in the de:finition of' monotone normality), then it is of 

interest to determine what happens i:f usual topological notions are 

tied to this intrinsic structure. In addition to the ideas mentioned 

in this lecture, you can get a deeper idea o:f what we ha.ze in mind b

looking at Zenor's papers (1,],[z
2
] and their sequel, written by

Gruenhage [G]. (See also (BL].)

Let me close this lecture by listing a few open questiona aaso­

ciated with Dugundji Extension Theory. 

(1) Dugundji Extension Theory and Moore spaces.[HL2]. I re:f'er you to

the lectures of Mike Reed :for the definition of' a Moore space.

The general question in this area asks whether a Moore space X

muat be metrizable provided that for each closed AC. X there is

a continuous linear extende� 'l,: C *(A)--t c"(X), where both
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function spaces carry sup-norm topology. Certain things are·known 

about this question. 

a) If one can always obtain linear extenders of operator norm < 3

then van Douwen's theorem (D2] forces X t 

normal and hence metrizable.

collectionwise

b) If we consider only those Moore spaces X which satisfy the

Countable Chain Condition (i.e., which do not contain any un­

countable pairwise disjoint collection of open seta), then X

is metrizable if and only if for each closed AcX, some con­

tinuous linear extender from C�(A) to C*{X) exists.

c) For any Moore space X, if continuous linear extenders (with­

out any norm restriction) can be found for each closed A c:. X,

then X is normal and metacompact. That mak:es me wonder if a

consistency result might be hiding bere. Indeed, it will be

fruitful to determine whether or not continuous linear extenders

can be found in Heath 1 s "_V-space• (H1, which may. be described

as follows. Assume .Martin•s Axiom plus the negation of the Con­

tinuum Hypothesis. Fix any set S c. 'R. having card (S) = Wj_;

then S is a Q-set. The pointa of Heath's space X are all

points (x,y) Ci R2 having Y> O together with all points

(x, O) where X4á So Any point (x,y) wi th Y> O is isolated,

and basic neighborhoods of a point (a, O), for ae s, are set s

of the form

B (a, n) = { (a, o)} u{ (X, y) e X\ y = x-a and lx-a I < i} . 

It is known that X is a normal, metacompact Moore space, but 

whether X a dmi ts enough continuous linear extenders is un-

known. 

(2) Is the Dugundji Extension property hereditary? More precisely,

suppose a apace X is no r to sat i. fy the concl usions of ei ther
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Theorem Hor Theorem I. Must every aubspace o:r X aatisfy the 

same conclusions ? I.t' not, for which aubspaces does tbe conclueion 

hold. (I seem to recall that the exist.ence o-r nD1"m l 1.ia.ear .exten­

ders is inherited by open F
d" 

-subspaces.) 

(3) Uniformly continuous extende-rs. W.e saw in Tb,eo�� D •that. i� A

is any closed subspace of a normal space X, th,en the� :i:e a con­

tinuous (not necessarily linear) extender t: c•(A)-+ c•u),

both function spaces being topologized by the au-p·-norm metrie.

This third queation a·alc-s �heth�� 'i can b.e t�en to be unitorml.y

continuous with respect to the sup-metrie. This is intimately r·e­

lated to another queation:. can one always obtain a.n extender "li

which has a Lipschitz constflnt. We know (DLPJ that thi-a Lipscbitz

constant cannot be < 2 (in general) but we don't know about cons•

tants belonging to [2,+ .. ).
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