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SEMINAR UNIFORM SPACES 1975=76

Cones and proximally fine spaces
Miroslav Hulek

M.D. Rice announced in his preprint [R] that for any
zero-dimensional proximally fine space X which is not precom-
pact one can find a proximally fine space Y such that X< Y
is not proximally fine. This result uses and extends the aut-
Ror s example from [H] where X was assumed to be uniformly
discrete. Z. Frolik asked whether the assumption “"zero-dimen-
sional™ in the Rice s result may be omitted. The main task of
this paper is to show that it may be.

V. Kirkovéd, having read the preprimt [(R] in our seminar,
indicated a probable proof of the Rice ‘s result: X contains
a countable uniformly discrete subspace N as a retract; taking
Y from [H] sueh that NxY is not proximally fine, we have that._.
also X=Y is not proximally fine because N»x Y is its retract.

In our general case we can find a countable uniformly
discrete subspace N of a non-precompact space X and a proxi-
mally fine space Y such that NxY is not proximally fine, but
the proof that Xx< Y is also not proximally fine must be comp-
letely different. We know that there is a proximslly conti-
nuous mapping £: NxY—> M which is not uniformly continuous.
To prove that XxY is not proximsally fine it suffices to ex-
tend £ on a proximally continuous mapping £ defined on XxY,
We cannot require the range of £ to be M; also, if A is @ sub-
space of a uniform space By g: A—> C is a proximally conti-
nuous mapping, there need not be a uniform space D containing
C as a subspace and a proximally continuous g: B—> D extend-
ing £ (e.g., 1£ B 1is and A is not proximally fine, g is not
uniformly continuous = for the existence of such A, B see
{H1,[T]l). Thus in our approach, we must use special features
of our case, namely that N is uniformly discrete in X,

Definition. Let I be the unit interval [0,1] with the
standard metric uniformity. We shall denote by Con X and call
cone over a uniform space X the quotient of X=I along Xx(0).
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The points of Con X are pairs {(x,y>, x€X, yeI - (0),
and the point O; sometimes we shall write (%x,0 >, x€X, for
0.

Proposition. Con X has the following covers W (%,7)
for a base of its uniformity:
U is a uniform gover of”JE, V= {V'k§§ is a uniform
cover of I such that OeV - L"J Vs

WU, YY) = {UxV, |Ue 4 ,k303 v
v {{x,y)> &€ Con X| yev,$.

Proef. To prove that % s are a base for a uniformity
it suffices to show that they have star-refinements. let 2%/,

Y’ be star-refinements of % , 7 amd let #‘= ‘{V12§= ’

0¢v; - L?vi y 8ty V;cvo. For <a,b)> e Con X, if b¢v;,
sty acUe a |, sty,bcVy then 't'w*ca’,zrr)“»b>c UxV,,

and 1if be V, then st 1y 5,y <8,b>ci<x,y>€ Con Tl yeV¥ 3.

To prove that - % s form the uniformity of Con X we must re-
alize that the canonical mapping £: Xx I —> {Con X, £¥'3>
is uniformly continuous (clearly) and is also quotient since
any W(U,?) refines the star of £ [ % < V1.

Consequences. (1) If for £: X—> Y we define (Con f)
{x,y?» = {fx,y), then Con is a functor Unif— Unif.

(2) The mapping iy =fx—><x,1>% : X—> Con X is
an embedding.

(3) If p is the preeompact modification, then po Con =
= Cono p.
The third assertion follows from the facts that p(XxI) =
= pXxI and that p commutes with quotients.

Now we return to our case.

Theorem. A proximally fine space X is preeompact iff
X xY is proximally fine space for any proximally fine space
T.

Proof. The necessity is proved in [Hl. Suppose now that
X is proximally fine non-preeompact and N is a uniformly dis-
erete eountable subspace of X. By [H) there exists a (eount-
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able, topologically fine, with a unique accumulation point)
proximally fine space Y such that Nx Y is not proximally fi-
ne. Let £: Nx Y— M be proximally but not uniformly conti-
nuous (hence £': Nx ¥Y—> pM is uniformly contimous). It fol-
lows from Proposition that the following two mappings are
uniformly contimous:

£ =4<x,2,y7 —><{x,5,2>% ¢ (Con N)»¥—> Cor (Nx7Y),
, O if 4 <x,n>2 1 for all neN
k: X—> Con N, kx 8/
‘ N <n,l -4a<x,n)> ir d {(x,n>< 1
(here 4 is a uniformly continuous pseudometric on X such that
d<{n,m>Z 2 for different n, me N = thus k is the usual map~
ping into hedgehogs). We may put now
f=cCont'o £ o (k xly): X x ¥ —> Con (pM). Since
Con (pM) = p Con M, we have received a proximelly continuous
mapping $: XxY—> Con M which is not uniformly continuous
(since its restriction £ is not uniformly continuous). To see
the situation, look at the diagram in Unif (except the dot-
ted arrows being in Prox):

' r'

Nx<Y - ' > pi

/ \;\"M(/
XxY ' l’
_ \ iy _yCon ¥ iy
£=(kx1ly) P %

Con(NxY) ——3> Con pM = p Con M
Con £

One can see from the proof of Theorem that we may use anot-
her concrete functor F instead of p with the property that
the identity mapping Con FM—» F Con M is uniformly conti-
nuous (i.e. that Con o F<F o Con) and F>1y..pe This condi-
tion is fulfilled if, for instancs, F’]'Unir and FEx I <
< F(MxI) for any (metrizable) M (e.g., if F is an upper mo~-
dification). In such a case we obtain:

If 2e is the first cardinal such that e <Y is not
F=fine for an F-fine space Y, then XxY is not F-fine when-
ever the covering character of X is at least o¢ .
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Clearly it may happen that no such ge exists even if
F is a reflection (e.g. a zero~dimensional modificstion)
because the corresponding coreflective subcategory ¥ ef
F_fine spaces consists only of uniformly discrete spaces.
But if Unif P JC o5 4 topologically fine spaces ¢ (if

I'Unif ﬁ F<p), then such 2¢ always exists - the proof is

the same as for F = p in [H]. In particular, the above gene-
ralization of Theorem can be applied to F = ¢, , the modi-
fication associating to X the finest uniformity containing

l-aniform covers of cardinalities smaller than < ; in
this case, the corresponding 9¢ equals to oc
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