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SEMINAR UNIFORM SPACES 1975=76

Cn hedgehog=topologically fine uniform spaces
by Zdenek Frolik, Jan Pelant, and Ji¥{ Vilfmovsky

This paper is motivated by the following general problem
gand program: Given a class X of spsces, is there the lar-
gest coreflective subclass of X , and if there is one, find
"useful" descriptions of it. In this paper we study EXT, the
clags of all X such that uniformly continuous real valued
functions extend from subspuaces to X. The most interesting
descriptions are in terms of hedgehogs, the property of the
space of all uniformly continuous functions to be a ring and
the distal structure.

If X is a uniform space we denote by th the set X en-
dowed with the finest uniformity topologically equivalent to
{. The set of all uniformly continuous functions on X is de-
noted bty U(X). H(A) will denote the hedgehog over a set A,
that is the set of all (a,x ),ae A, O0£x £1, where we con=-
sider <a,0> = <(b,0> for all a, be A (the null of H(A)),
with the metric d(<a,x>,<a,y») = |x - y!| and
d{<{a,x),<b,y>) =x + y if a3+ b. Recall that H(A) is an
injective uniform space (cf£.0[71). H(w) = tp will denote the
class of all X for which any uniformly continuous mapping
£: X—> H(w ) remains uniformly continuous into tyH(w). In
an analogous way we may define H(o¢ )~ tf for other cardinals,
R - tf, (Ixw) - tey where I x w is the uniform product
of a compact interval T and w with the discrete uniformity.
It 1s easy to verify that all these classes are coreflecti-
ve. For general coreflections of this type see L8l.

Further important class of uniform spaces we want to work
with is the class of all X having the property that U(X) ie
a ring (i.e. U(X) is closed under multiplication). One can
again prove the coreflectivity of this class.

Proposition 1: The following properties orf a uniform
8pace X are equivalent:
(a) U(X) is a ring
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(b) £2c U(X) whenever f£e U(X).
The proof is easy using the identity:

f-g= % ((f+g)2-(f-g)2)

Theorem 1l: Each of the following properties implies
the next one:
(1) X is H(w) - te
(2) X is R =~ te
(3) u(xX) is a ring
(4) Xis(wa)-tf

Proof: (1) 9 (2). Because of coreflectivity of
Hlw) - tp it suffices to prove that (Hlw) - tf)R = t.R
Let us define two maprpings £, g: R— H(Z), where Z iz
the set of all integers. (Or course H(Z) is uniformly equl
valent to H(w).)

{n, lx-nl) for x s IIn,n-h%]l,neZ

{n, In+1=-xit> forxet[n+i,n+ll,

nez

£(x) = —

' 1 1
_ _—~ <nix=n+ 3|} for x elln -5 ,n], nel
g(x) 3

™S <n,lx-n-=- Q_I) forxel[n,n+-%]],nez

Botk £, & are uniformly continuouws, hence they are unifor
1y continuous from (H(co) = t,JR into t H(Z),

tfR hes for basis of uniformity the covers of the form W
= UW¢ie ;neZ3), where ¢ , are positive reals and W
consists of metrie linear covers of intervals In,n + 1]
with radius € ,. Similsrly, tfH(A) has basis formed by
covers W= W(e, {e j;aecAl), e, €, positive,

sup €, < € , having an ¢ =-ball centred in the null of
aec

H(A) and the rest consists of metric linear g  ~covers
with centres in {{a,x>; €64 x41%., Let us take any
WC(4€e,3%) from the basie of tpR. We may assume that all

€ , are less than % o If we denote U = {In,n+ 110 ;

neziu{]n-% ,n+%{[; neZ% , then the cover

LW, Se DT ¢t Lucd se W0
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is uniform in (H(@) = t,)R and refines ’w'( ie,%), hen-
ce (H(w) = t,)R =t R,

(2) = (3) Let XeR - tf, feU(X). The mapping £ can
be decomposed as if” y, wWhere £ is uniformly contimious into
teR, 1: t R —> R 1s the identity. £2 (1£7)2 = 12¢°, 1% 1o
uniformly continuous, hence f2 is. The rest follows from the
Proposition 1. \4

(3) =>(4): Take W( i{e,3) from the basis of
te (I x @ ). The function F(x) = -E-“ for xeIx dn3} is the

product of two uniformly continuous functions on I x < ,
=1t g(1)1= W(te,3), where ¥(1) is usual l-cover
of the real line. Using the fact that the property (3) is
coreflective we obtain the statement.

Remark: All properties in Theorem 1 differ. As coun-
terexamples can serve the following: H(w) for (2) =% (1),
R for (4) =~>(3), finally the coreflection in (3) on the
real line 1is not topologically fine. The class H(w ) = te
is hereditary. This follows easily from the injectivity of
H(w)e The other classes in Theorem 1 are not hereditary,
moreover every uniform space can be embedded into some
R = tf space, because every injective space has all uni-
formly continuous functions bounded, hence it is R - tf.
One can £ind it interesting that the following holds:

Proposition 2: R" - tf =R = tf for any positive inte-
ger n.
The proof will work in three steps.
l. At first we prove that R = t(I"x e ) = 1;}‘;(1n x @),
We define real valued functions PyseeesyP, ON I x @ as fol-
lows:
Py{Xyseeesxp,k) =2k + x4 , 1 =1,...,n

It is obvious that for any uniform cover U of t:f(In @)

~n
there is an open cover % of R such that /\ pil(’lf) refi-
nes U .
2« Now we shall prove that R = tf(I % R) = (Inx R).

We take Ry = U[n--i,ni-l]l,R:\J[n-—

m 2,“"'130
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10 Bl is of the form Inﬂ' x @ and the functions Pis

L d

ceesPpyl from the step 1 corresponding tc 17 x Rl have nb-
viously uniforaly continucus extensions 1')':|_,...,pm1 on
I%x R. Similarly we obtain functions qQpreeerQpyy 1€ we
start with I"x R,. Finolly {I"x R, I"xR,} 4s s unifo

cover of I'x R, hence for sny uniform cover % of
tf(Inx R) we can find an open cover U of R such that i

cover \
mx1 m+ _
i./=\4 pil("n Az/z\,, qil('U’) A $1I%% Ry, I"x R, 3

refines U.

3; In the third step e prove R = t, R' = (R for all

nz22. For any open ball B centred in O in R there is ti
mapping : R? B—> In-lx R, which 1s uniformly continuo
and topological homeomorphism, hence £ is 3 uniform iso-
morphism between R - tf(Rn\ B) and tf(In-l;x R.). (Here q

plies step 2.) Hence we obtein that R - tf(Rn B} is topr
logically fine for every open ball B. Now the result fol-
Iows 3immedi tely uaing th 1lemma {see [2])) which asserts
that if for iwo topclogically homeomorphic uniform spac:s
their uniformities coincide outside all nsighbourhoods of
some point, then t{hese 3paces are uniformly isomorphic.
Applying the lemma tc R - tf R? ana ifRn we finish the
proof.

Remarks: In the same way we can obtsesin that H(w & -
- tp = (He )= I™ - tp for every positive integer n.
It should be noted that K = t f(I"’ = R) 1s not topologice
1y fine, because one can essily check that R = t,.(I% x il
is projectively generated by real valued functions (i.e.
{4t has subbase of linear covers) and that tf(Iw x R) has
not this property. Consequently R%¥ - tp is distinct fro

R-tf.

Theorem 2: The following properties of a uniform spé

ce X are equivalent:
(1) Xis H@) -t



- 1q-

(2) X is H(x ) - te for o< any infinite cardinal number
(3) X is hereditarily R - t,

(4) For every subspace Y of X, U(Y) is a ring

(5) X is hereditarily (Ixew ) - t,

Proof: (1) > (2): Let o be any cardinal number,
take W (e, 4egia € a3 ) any cover from the basis of

tfH(oc). For every n € w we derote A, the set of all €

1 1 _
€ x such that -, < €, £ = , . The mapping f£: H(ec })—>

—> H{w) definsd £( <a,x>) = <n,x> for aecA,, is uni~
formly continuous, hence it is uniformly ccntinuous from

(HHw) - tf) H(ex ) into tfH(w). w( e,{miz; neows)

is a uniform cover of t.H(«w), hence its preimage under £
is a uniform cover of (H{w) tf) H(o) and r fines

Wle, 4e,3).

(2)=» (1) 1is obvious, becesuse H(w ) is a retract of
H(oc)e
The implications (1)- »(3), (3)-—>( ) and { )=>(5) fol=-
low from Theorem l. It remains to prove (5)==3(1 (obtai=-
ned also by P. Pidk). Take X hereditarily {Ixc ) = tg,
f: ¥-—H(w ) uniformly continuous. further take

Wile 4e¢ n 3 ) any uniform cover from the basis of

tfH(w). B = £{n,x; :E,,_'-.é « % i1 89 b psce of H(w

uniformly somorphic to I < w . We dencte Y = £ l(B1a
a subspace of X, fl = le is uniformly continuous into
t.B, W(4e %) 1s a uniform cover of t and

fIl [w’(-ian'ﬁ)luf- L Cax>, =e3 s auniform
cover of X refining gL CWle, e 3)3.

Now ¢ turn our attention to two important ¢i se
connected v th extension of un formly continuou mappings
We hall denote by EXT the clas o hose u fo m paces
where uniformly continuous (real valued) £ nctions extend
to the 'hols space from arbitrary subspaces and b T
the class of all uniform spaces here niformly contin o s
functions extend from uniformly discrete cocunt ble subtp ce .
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Let f;kn;n ¢ @f bs a eequence of natural numbe s. We
shall denote by D{ {k %} the following uniform space:
The underlying set is £ { p,iY>;necw , 1= 1,2,000,k, 3,
the system 4%U pin € forms s basis of a uniformity
of D(4k %), where <L, is defined as

43¢ ni>%; n<njui{i{mi>; 1= 1,2,0005kp 33 m=ni,

Cne can immedistely see that this is a metrizable zerodi-
mensional topclogically diecrete uniformity.

Proposition 3: Let € be & coreflective subcategory
of uniform spaces contained irn EXT, , ¥ the correaponding
coreflector. Then F(D{ 4£k,3)) is uniformly discrete.

Remsrk: For any coreflective subcategory € in uni-
form spacea, the class Sub (‘€ ) consisting of all subspaces
of spaces in € 1s again coreflactive. (For the proof of
this fact see [8].) If € 1is a sabclass of EXT., , which
is hereditary, then Sub (<€) is again contained in EXT, .
Hence in the proof of the proposition we may assume that ¢
is hereditary, or, equivalently, that F preserves embedd-
ings.

Lemma: Let £ be a continuous function on compact in-
terval [0,11 with £(0) =0, £(1) = n(k - 1), where n, &
are given natural numbers. Then we can find points X39%o9e!
eoeyxy of [0,17, fulfilling the follo ing:

for 811 i = 1’2,.¢O’k-1‘
Proof: The proof is elementary. Dividing [ 0,11 into
n equal intervals we f£ind points Xp» X3 with X X% =

and £(x,) - £(x;)2k - 1. The other xi'a we cbtain from th
Darboux property of continuous f in Ix;,x 1 .

Proof of Proposition 2: We define the function fo on
uniformly discrete countable subset {403 x4{ ni; n €
cwé v 4413 x4 n; newl of Ixw in this way:
For all ne fo(-io'ix{n})r-o, £,081% % 4{nj°

= (n + 1)(kn -1).
f, has a uniformly continuous extension £ on F(Ix w).
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Using the Lemma we cen £ind in every Ix {n3 some points

1 : -
mad and for all i =

Xy 9Xngeee X such that x -X, =
172 ’ kn kn 1

= 1,250009ky = 1 there is x4< X;,, and f(xiﬂ). - (x4l >1.
This procedure defines the uniformly cont inuous embedding
of the space D(§k %) into Ix @ . It is obvious that
D({Xx,3%) embedded in this way in Ix c> is uniformly
discrete in the uniformity inkerited fro F(Ix @ ).

Theorem 3: Let € be a coreflective class in uniform
spaces contained in EXT‘Q e Then all X e € have the fol-
lowing property: )

Whenever 4B, ;n € w § ii a eountable uniformly discre-

n
te family in X, B, = 2\=J4 An1 and for all n the fini-

(%) te systems 44, 1; 1=1,2,..0,k; % sre again uniformly
diswete’ then 4,Ani’ n G cd) ] i = 1’2’0..,%; 18 a
uniformly discrete family in Xe

Proof: Again we may and shall assume that € is clo-
sed under arbitrary subspaces. B = m,LeJo B, with the relat-

ed uniformity from X is an element of <€ . The canonical
mapping q: B — D({ k, ¥ ) defined q(x) = <n,i)> for x in
An1 is uniformly continuous, hence F(q) is uniformly eonti-
nuous from FB = B into F(D(4X, %)), where F is the core-
flector eorresponding to € . Using the foregoing proposi-

tion we obtain that ¢ An1 [ . is uniformly discrete fa-
D

mily in X,
As a consequence of the foregoing theorem we obtain
the following

Theorem 4: Rlw) - t, is the lar est coreflective
subcategory of uniform spaces contained in EXT,., .-

Pro £: (i) At first we prove that H{w ) - t, 1s con-
tained in EXT, . Assume X is H(@) = t,, £eU(D), where D
is countable uniformly discrete subspace of X. We define
J: D—>H(D) by t e formla j(x) = <x,1>. J is uniformly
contimuous and from the injectivity of H(D) we can extend
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it to the uniformly continuous J: X —» H(D). From the as-
sumption we obtaein that jJ remsins uniformly continuous
into trH(D), which is in EXT,, , hence f extends to soms
geU(tfH(D)). The composition gJ e U(X) 1es an extension of ?
on the space X.

(ii) To prove the converse we suppose a coreflective
class € contained in EXT,, . We denote F the correspond!
coreflector. From the preceding remarks it is clear that]
we may assume F to preserve topology and embeddings. Unifo
ly discrete families in tfﬂl x @ ) are exactly those of the
form (% ) in Theorem 3. Using this theorem we obtain that
F(I x @ ) has the same uniformly discrete families as
tpo(Ix @ ). But obviously to(I xo ) is distal (the ecoarses
one having the same uniformly discrete families), hence
MIxw) = tf(’I x @), F preserves embeddings, hence the
spaces in € are hereditarily (Ix w )-tf. Applying Theors
2, we complete the proof.

Theorem 5: Each of the following conditiomns 1is equiv
lent to the conditioms (1) = (5) in Theorem 2:
(6) For 4f ;ne @3 a countable family of uniformly cont
nuous bounded functions with uniformly discrete supparts |
. X the function m%’,‘o f, is uniformly contimious (i.e. the

family ££,%  is uniformly equicontimous).

(7) Whenever £B,;n e @w3% 4s a countable uniformly disere
te family in X, B, =, &ni and for all n the finite fan!

Vv e 1
lies “An‘; i=1,2,...,k,  § are again uniformly diserete
then {An1;

in X, (I.e. the property () from the Theorem 3.)
Proof: (1)=>(6): We may assume that all £, are not

1=1,2,sc0,kpyn €03 1s uniformly diserete

7
identically O. Take g, = nﬁyw ,where i 1 is a usual
mn
sup norm. g, are uniformly continuous and converge uni foral
to O, hence g 'm% « &n 18 a bounded uniformly continuous

function, hence g is uniformly continuous into some compact
interval J. Take b: X—» H(w ) uniforaly continuous such
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that for x € supp f,, there is b(x) = <{n,1> (it ie again
possible from the injectivity of H(w)). The ca e ian
product 2% of g and b defined by the formula *(x) =

= {g(x),b(x)) ps X into Jx H(ew ) uniformly, hence it is
uniformly continuous into (H(w ) = tf) (J= H(® )). From
Theorem 1, condition (3) and Theorem 4 it follows that in
this space we can multiply functions and extend functions
from countable uniformly diserete subspaces, hence the func-
tion h(<x,y>) = x+h (y) is uniformly continuous on it,
where h’ is uniformly continuous on (H(w) - t ) H(co)

wit h (<n,l)) 2B . |l £, I o The c_onposition 5 18 a
uniformly continuous function on X and one can easily see
that it is equal to n%m £he

(1) — (7) 1is immediate from Theorems 3 and 4.

(7) »(1): Take £: X— H(w) uniformly continuous.
From the property (7) we obtain that £ is distally continu-
ous from X into t H(w), tfH(c.)) is distally coarse, hence
£ is uniformly continuous into tf-H(w). (Distal continuity
means that preimages of uniformly discrete families are
again uniformly discrete. Distally continuous mappings and
distally coarse spaces are studied in [3].)

(6) =y (1): One can easily verify that spaces fulfil-
ling (6) form a coreflective clas (they are closed under
uniform sums and quotients). To prove (1) it suffices to
know, whether this class is contained in EXT.,, . This will
be an immediate corollary of the follo ing Proposition 4
The proof 1 then completed by applying Theorem .

Proposition 4 . Let X be a unifor space fulfilling
Condition (6) in Theorem 5. Then X is in EXT.

Proof: Let Y be any subspace of X, fe U(X). For any
integer n we denote Y, =102 n,n + lﬂf] , t e set of all
odd integers will be denoted by 2y, t e set of all even in-
tegers by 2,. The family &Y snE Zy 5 is uniformly diserete
in X. W choose bounded f eU(X) for all ne Z, such t at
fb\Y t\Yn and -iauppf, neZ]_3 1eaunifor dis-
crete family in X. The fnnct:lon £ = Z f eU(X),
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hence g = £ - £'| 2 eU(Y) and ¢ | U £ ¥ ;ne2 3 = 0.
We have g =n%zz &,y Where
_ g(x) for xe b &

(x)
RSN O otherwise

Now choose {hn;ne 223 system of bounded uniformly conti-
nuous functions on X with uniformly discrete supports such
that b, | Y = g, for all ne Z,. Then h cnge_zz h, e U(X),

£-2)Y-2|Y=0, hence (£  + h) | Y = £ and £ + he U

Theorem 6: H(w) - t, 1s the largest coreflective
subcategory of uniform spaces contained in EXT,

Proof: Using Proposition 4 and Theorem 5 we obtain
that M(w) - t, is contained in EXT. The rest follows fro
Theorem 4.

Now we are able to add the following characterization
of the spaces in Theorem 2.

- Theorem 7: Each of the following conditions is equivs
lent to the conditions (1) = (7) in Theorems 2 and 5:

(8) X is in EXTAR - tf
.(9) X is in EXT and U(X) is a ring.

Proof: The implications (1) —> (8), (8) => (9) follov
imnediately from Proposition 1 and Theorem 6. We shall
show (9) — (4).

Taking any subspace Y of X, e U(Y), we have an extension
FeU(X) of £. P2« U(X), too, hence T2 = 22| YeU(Y). Pro-
position 1 completes the proof.

Conclud ing remarks:
1; Seyeral coreflective conditions for X to be in EXT have
been known for a while. E.g. J. Isbell showed [6] that lo-
eally fine spaces are in EXT, and the first author noted
in [1] that each sub-inversion-closed (subIC) space is in
EX?., The latter condition is quite fine, but it is not the

finest, as shows the following
L\ ]
Examples Put X = \/ @,, @, =« for awy nek.
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Consider a uniformity on X whose base is formed by the co-
vers X, = ¢ |xe @, , 0403 uvuiw,|n’>n3,
Then aubIc(I)* Hw) -t (x).

Proof: The space X is a countable eonplete metrie to-
pologically discrete space. Since for complete metrie spa-
ces the subIC coreflector is the same as the IC one (inver-
sion closed)(see [1]) we have immediately that subIC(X) is
the uniformly discrete space (as im IC(X), all countable
partitions consisting of cozero sets, are uniform covers,
again see [11 ),

On the other hand, there is a nondiscrete space Y fi-
ner than X such that Ye H(w) = t,. It suffices to endow
the set X with the uniformity which has for basis the co=
vers with the discrete trace on at most finite number of

@Wpny say conl, W ,...,conk, and with the finite parti-

B2

tion trace on each w,,né4 DyyecesDy § o

2) There are several classes of uniform spaces which
are of interest in measure theory. In these cases coreflec-
tion sufficient conditions have been studied for long time.
We refer to two preprints by J. Pachl:

Free uniform measures on subinversionclosed (uniform) spa=-
ces), to appear in Comment. Math. Univ. Carolinae,l7(1976)
Kat&tov=-Shirota Theorem in uniform spaces (to appear).
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